咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 35 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 21 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 21 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地质学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 computer archite...
  • 5 篇 deep neural netw...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 encoding
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 large dataset
  • 3 篇 computerized tom...

机构

  • 26 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 northwestern pol...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 31 篇 guo guodong
  • 11 篇 zhang baochang
  • 11 篇 zhou dingfu
  • 10 篇 zhang liangjun
  • 10 篇 yang ruigang
  • 10 篇 fang jin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 song xibin
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 dai yuchao
  • 5 篇 zhu yu
  • 5 篇 xiong hui

语言

  • 123 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Applications"
125 条 记 录,以下是31-40 订阅
排序:
Towards making deep transfer learning never hurt
arXiv
收藏 引用
arXiv 2019年
作者: Wan, Ruosi Xiong, Haoyi Li, Xingjian Zhu, Zhanxing Huan, Jun Big Data Laboratory Baidu Inc. Beijing China National Engineering Laboratory for Deep Learning Technology and Applications Beijing China School of Mathematical Sciences Peking University Beijing China
—Transfer learning have been frequently used to improve deep neural network training through incorporating weights of pre-trained networks as the starting-point of optimization for regularization. While deep transfer... 详细信息
来源: 评论
GINet: Graph interaction network for scene parsing
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Tianyi Lu, Yu Zhu, Yu Zhang, Chuang Wu, Ming Ma, Zhanyu Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China Beijing University of Posts and Telecommunications Beijing China
Recently, context reasoning using image regions beyond local convolution has shown great potential for scene parsing. In this work, we explore how to incorperate the linguistic knowledge to promote context reasoning o... 详细信息
来源: 评论
Large scale autonomous driving scenarios clustering with self-supervised feature extraction
arXiv
收藏 引用
arXiv 2021年
作者: Zhao, Jinxin Fang, Jin Ye, Zhixian Zhang, Liangjun Baidu Research and National Engineering Laboratory of Deep Learning Technology and Application China Baidu Research United States
The clustering of autonomous driving scenario data can substantially benefit the autonomous driving validation and simulation systems by improving the simulation tests' completeness and fidelity. This article prop... 详细信息
来源: 评论
Dynamic Group Transformer: A General Vision Transformer Backbone with Dynamic Group Attention
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Kai Wu, Tianyi Liu, Cong Guo, Guodong Sun Yat-Sen University Guangzhou China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by each query attending to all keys/values, various methods have constrained the r...
来源: 评论
LAE : Long-Tailed Age Estimation  19th
LAE : Long-Tailed Age Estimation
收藏 引用
19th International Conference on Computer Analysis of Images and Patterns, CAIP 2021
作者: Bao, Zenghao Tan, Zichang Zhu, Yu Wan, Jun Ma, Xibo Lei, Zhen Guo, Guodong CBSR&NLPR Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science and Innovation Chinese Academy of Sciences Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Facial age estimation is an important yet very challenging problem in computer vision. To improve the performance of facial age estimation, we first formulate a simple standard baseline and build a much strong one by ... 详细信息
来源: 评论
Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Nan Wang, Kuiran Peng, Xiaoke Yu, Xuehui Wang, Qiang Xing, Junliang Li, Guorong Zhao, Jian Guo, Guodong Han, Zhenjun Beijing101408 China Beijing China Institute of North Electronic Equipment Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application China
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation. Therefore, perception of the status of UAVs is crucially important. In this paper, we consider the task of tracking UAVs, prov... 详细信息
来源: 评论
RotPredictor: Unsupervised Canonical Viewpoint learning for Point Cloud Classification
RotPredictor: Unsupervised Canonical Viewpoint Learning for ...
收藏 引用
International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT)
作者: Jin Fang Dingfu Zhou Xibin Song Shengze Jin Ruigang Yang Liangjun Zhang Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China ETH Zürich Switzerland University of Kentucky
Recently, significant progress has been achieved in analyzing the 3D point cloud with deep learning techniques. However, existing networks suffer from poor generalization and robustness to arbitrary rotations applied ... 详细信息
来源: 评论
Relaxed 2-D principal component analysis by Lpnorm for face recognition
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Xiao Jia, Zhi-Gang Cai, Yunfeng Zhao, Mei-Xiang School of Mathematics and Statistics Jiangsu Key Laboratory of Education Big Data Science and Engineering Jiangsu Normal University Xuzhou221116 China Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications Beijing100193 China
A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training ... 详细信息
来源: 评论
Revisiting distillation and incremental classifier learning
arXiv
收藏 引用
arXiv 2018年
作者: Javed, Khurram Shafait, Faisal Deep Learning Laboratory National Center of Artificial Intelligence Islamabad Pakistan School of Electrical Engineering and Computer Science National University of Sciences and Technology
One of the key differences between the learning mechanism of humans and Artificial Neural Networks (ANNs) is the ability of humans to learn one task at a time. ANNs, on the other hand, can only learn multiple tasks si... 详细信息
来源: 评论
Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Sitong Wu, Tianyi Tan, Haoru Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by the global self-attention, various methods constrain the range of attention wit... 详细信息
来源: 评论