咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 21 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 21 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地质学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 computer archite...
  • 5 篇 deep neural netw...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 encoding
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 large dataset
  • 3 篇 computerized tom...

机构

  • 26 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 northwestern pol...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 4 篇 institute of dee...
  • 3 篇 university of sc...

作者

  • 31 篇 guo guodong
  • 11 篇 zhang baochang
  • 11 篇 zhou dingfu
  • 10 篇 zhang liangjun
  • 10 篇 yang ruigang
  • 10 篇 fang jin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 song xibin
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 dai yuchao
  • 6 篇 guodong guo
  • 5 篇 zhu yu
  • 5 篇 xiong hui

语言

  • 122 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Applications"
124 条 记 录,以下是41-50 订阅
Self-supervised monocular depth estimation for all day images using domain separation
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Lina Song, Xibin Wang, Mengmeng Liu, Yong Zhang, Liangjun Institute of Cyber-Systems and Control Zhejiang University China Baidu Research China Huzhou Institue of Zhejiang University China National Engineering Laboratory of Deep Learning Technology and Application China
Remarkable results have been achieved by DCNN based self-supervised depth estimation approaches. However, most of these approaches can only handle either day-time or night-time images, while their performance degrades... 详细信息
来源: 评论
FaceScape: A large-scale high quality 3D face dataset and detailed riggable 3D face prediction
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Haotian Zhu, Hao Wang, Yanru Huang, Mingkai Shen, Qiu Yang, Ruigang Cao, Xun Nanjing University China Baidu Research University of Kentucky United States Inceptio Inc National Engineering Laboratory for Deep Learning Technology and Applications China
In this paper, we present a large-scale detailed 3D face dataset, FaceScape, and propose a novel algorithm that is able to predict elaborate riggable 3D face models from a single image input. FaceScape dataset provide... 详细信息
来源: 评论
IDARTS: Interactive Differentiable Architecture Search
IDARTS: Interactive Differentiable Architecture Search
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Song Xue Runqi Wang Baochang Zhang Tian Wang Guodong Guo David Doermann Beihang University Beijing China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing China Lobachevsky State University of Nizhni Novgorod Nizhni Novgorod Russian Federation National Engineering Laboratory for Deep Learning Technology and Application Institute of Deep Learning Baidu Research Beijing China University at Buffalo USA
Differentiable Architecture Search (DARTS) improves the efficiency of architecture search by learning the architecture and network parameters end-to-end. However, the intrinsic relationship between the architecture’s... 详细信息
来源: 评论
Storm Deposit Characteristics and Orbital Cyclicity of the Early Devonian Xiejiawan Formation in the Longmenshan Area, Sichuan Province, China
SSRN
收藏 引用
SSRN 2024年
作者: Chen, Zheng'an Li, Fengjie Acikalin, Sanem Ogg, James G. Flynn, Shannon Liu, Gengchuan Zhang, Pengfei Wang, Jia Chen, Anqing Hou, Mingcai Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications MNR & Institute of Sedimentary Geology Chengdu University of Technology Sichuan Chengdu China National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Chengdu University of Technology Sichuan Chengdu610059 China School of Natural and Environmental Sciences Newcastle University Newcastle upon TyneNE1 7RU United Kingdom Earth Atmospheric and Planetary Sciences Purdue University West LafayetteIN47907-2051 United States Beijing Design Company China Petroleum Engineering& Construction Corporation Beijing China
The Xiejiawan Formation of early Devonian age in the Longmenshan area of Sichuan Province, China, is a shelf facies that consists of three types of carbonate-siliciclastic deposits: mixed near-shore, clastic mixed she... 详细信息
来源: 评论
Out-of-town recommendation with travel intention modeling
arXiv
收藏 引用
arXiv 2021年
作者: Xin, Haoran Lu, Xinjiang Xu, Tong Liu, Hao Gu, Jingjing Dou, Dejing Xiong, Hui University of Science and Technology of China China Business Intelligence Lab Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China Nanjing University of Aeronautics and Astronautics China Rutgers University United States
Out-of-town recommendation is designed for those users who leave their home-town areas and visit the areas they have never been to before. It is challenging to recommend Point-of-Interests (POIs) for out-of-town users... 详细信息
来源: 评论
LAE : Long-tailed Age Estimation
arXiv
收藏 引用
arXiv 2021年
作者: Bao, Zenghao Tan, Zichang Zhu, Yu Wan, Jun Ma, Xibo Lei, Zhen Guo, Guodong CBSR NLPR Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application
Facial age estimation is an important yet very challenging problem in computer vision. To improve the performance of facial age estimation, we first formulate a simple standard baseline and build a much strong one by ... 详细信息
来源: 评论
Spatial object recommendation with hints: When spatial granularity matters
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Hui Zhou, Jingbo Bao, Zhifeng Li, Shuangli Culpepper, J. Shane Ying, Haochao Liu, Hao Xiong, Hui RMIT University Australia Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China University of Science and Technology of China China Zhejiang University China Rutgers University United States
Existing spatial object recommendation algorithms generally treat objects identically when ranking them. However, spatial objects often cover different levels of spatial granularity and thereby are heterogeneous. For ... 详细信息
来源: 评论
Residual Carbonate Karst Reservoir Reconstructed by Karst Planation: A Case Study of the Ordovician Paleokarst Reservoir in the Ordos Basin
SSRN
收藏 引用
SSRN 2022年
作者: Hou, Linjun Su, Zhongtang Wei, Liubin Wei, Xinshan Zhang, Chenggong Fu, Siyi Han, Yong Ren, Junfeng Chen, Hongde State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Chengdu University of Technology Chengdu610059 China Institute of Sedimentary Geology Chengdu University of Technology Chengdu610059 China Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications Ministry of Natural Resource Chengdu University of Technology Chengdu610059 China CNPC Key Laboratory of Carbonate Reservoir Hangzhou310023 China National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields Xi’an710018 China
Based on the global typical karst characteristics reported in recent years and the latest oil and gas exploration results, it is found that the characteristics of the karst reservoirs in the Ordos Basin are significan... 详细信息
来源: 评论
Hierarchical Pyramid Diverse Attention Networks for Face Recognition
Hierarchical Pyramid Diverse Attention Networks for Face Rec...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Qiangchang Wang Tianyi Wu He Zheng Guodong Guo West Virginia University Morgantown USA Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
deep learning has achieved a great success in face recognition (FR), however, few existing models take hierarchical multi-scale local features into consideration. In this work, we propose a hierarchical pyramid divers... 详细信息
来源: 评论
GINet: Graph interaction network for scene parsing
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Tianyi Lu, Yu Zhu, Yu Zhang, Chuang Wu, Ming Ma, Zhanyu Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China Beijing University of Posts and Telecommunications Beijing China
Recently, context reasoning using image regions beyond local convolution has shown great potential for scene parsing. In this work, we explore how to incorperate the linguistic knowledge to promote context reasoning o... 详细信息
来源: 评论