咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 35 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 21 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 21 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地质学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 computer archite...
  • 5 篇 deep neural netw...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 encoding
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 large dataset
  • 3 篇 computerized tom...

机构

  • 26 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 northwestern pol...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 31 篇 guo guodong
  • 11 篇 zhang baochang
  • 11 篇 zhou dingfu
  • 10 篇 zhang liangjun
  • 10 篇 yang ruigang
  • 10 篇 fang jin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 song xibin
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 dai yuchao
  • 5 篇 zhu yu
  • 5 篇 xiong hui

语言

  • 123 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Applications"
125 条 记 录,以下是51-60 订阅
排序:
Invisible for both Camera and LiDAR: Security of multi-sensor fusion based perception in autonomous driving under physical-world attacks
arXiv
收藏 引用
arXiv 2021年
作者: Cao, Yulong Wang, Ningfei Xiao, Chaowei Yang, Dawei Fang, Jin Yang, Ruigang Chen, Qi Alfred Liu, Mingyan Li, Bo University of California Irvine United States University of Michigan United States NVIDIA Research Arizona State University Inceptio Baidu Research and National Engineering Laboratory of Deep Learning Technology and Application China University of Illinois at Urbana-Champaign
In Autonomous Driving (AD) systems, perception is both security and safety critical. Despite various prior studies on its security issues, all of them only consider attacks on camera- or LiDAR-based AD perception alon... 详细信息
来源: 评论
RotPredictor: Unsupervised Canonical Viewpoint learning for Point Cloud Classification
RotPredictor: Unsupervised Canonical Viewpoint Learning for ...
收藏 引用
International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT)
作者: Jin Fang Dingfu Zhou Xibin Song Shengze Jin Ruigang Yang Liangjun Zhang Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China ETH Zürich Switzerland University of Kentucky
Recently, significant progress has been achieved in analyzing the 3D point cloud with deep learning techniques. However, existing networks suffer from poor generalization and robustness to arbitrary rotations applied ... 详细信息
来源: 评论
Binarized neural architecture search for efficient object recognition
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Hanlin an Zhuo, Li Zhang, Baochang Zheng, Xiawu Liu, Jianzhuang Ji, Rongrong Doermann, David Guo, Guodong Beihang University Beijing China Xiamen University Fujian China Shenzhen Institutes of Advanced Technology University at Buffalo Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application Shenzhen China
Traditional neural architecture search (NAS) has a significant impact in computer vision by automatically designing network architectures for various tasks. In this paper, binarized neural architecture search (BNAS), ... 详细信息
来源: 评论
QuantYOLO: A High-Throughput and Power-Efficient Object Detection Network for Resource and Power Constrained UAVs
QuantYOLO: A High-Throughput and Power-Efficient Object Dete...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and applications (DICTA)
作者: Muhammad Gohar Javed Minahil Raza Muhammad Mohsin Ghaffar Christian Weis Norbert Wehn Muhammad Shahzad Faisal Shafait School of Electrical Engineering and Computer Science National University of Sciences and Technology Pakistan Microelectronic Systems Design Research Group Technische Universität Kaiserslautern Germany Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Pakistan Data Science in Earth Observation TU Munich Germany
Convolutional Neural Networks (CNNs) are producing state-of-the-art results in the object detection field. However, deep topologies of CNN are computationally intensive and typically require excessive resources (i.e. ... 详细信息
来源: 评论
FCFR-Net: Feature fusion based coarse-to-fine residual learning for depth completion
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Lina Song, Xibin Lyu, Xiaoyang Diao, Junwei Wang, Mengmeng Liu, Yong Zhang, Liangjun Institute of Cyber-Systems and Control Zhejiang University China Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China
Depth completion aims to recover a dense depth map from a sparse depth map with the corresponding color image as input. Recent approaches mainly formulate depth completion as a one-stage end-to-end learning task, whic... 详细信息
来源: 评论
iffDetector: Inference-aware feature filtering for object detection
arXiv
收藏 引用
arXiv 2020年
作者: Mao, Mingyuan Tian, Yuxin Zhang, Baochang Ye, Qixiang Liu, Wanquan Guo, Guodong Doermann, David Beihang University Beijing China University of Chinese Academy of Sciences Beijing China Curtin University Perth Australia Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application University at Buffalo Buffalo United States
Modern CNN-based object detectors focus on feature configuration during training but often ignore feature optimization during inference. In this paper, we propose a new feature optimization approach to enhance feature... 详细信息
来源: 评论
3D Part Guided Image Editing for Fine-Grained Object Understanding
3D Part Guided Image Editing for Fine-Grained Object Underst...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zongdai Liu Feixiang Lu Peng Wang Hui Miao Liangjun Zhang Ruigang Yang Bin Zhou State Key Laboratory of Virtual Reality Technology and Systems Beihang University Robotics and Autonomous Driving Laboratory Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China ByteDance Research University of Kentucky Peng Cheng Laboratory Shenzhen China
Holistically understanding an object with its 3D movable parts is essential for visual models of a robot to interact with the world. For example, only by understanding many possible part dynamics of other vehicles (e.... 详细信息
来源: 评论
Interactive grounded language acquisition and generalization in a 2D world  6
Interactive grounded language acquisition and generalization...
收藏 引用
6th International Conference on learning Representations, ICLR 2018
作者: Yu, Haonan Zhang, Haichao Xu, Wei Baidu Research Sunnyvale United States National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
We build a virtual agent for learning language in a 2D maze-like world. The agent sees images of the surrounding environment, listens to a virtual teacher, and takes actions to receive rewards. It interactively learns... 详细信息
来源: 评论
A new weighting scheme for fan-beam and circle cone-beam CT reconstructions
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Wei Xia, Xiang-Gen He, Chuanjiang Ren, Zemin Lu, Jian Wang, Tianfu Lei, Baiying The School of Biomedical Engineering Shenzhen University National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China The Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States The College of Mathematics and Statistics Chongqing University Chongqing China The College of Mathematics and Physics Chongqing University of Science and Technology Chongqing China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
In this paper, we first present an arc based algorithm for fan-beam computed tomography (CT) reconstruction via applying Katsevich’s helical CT formula to 2D fan-beam CT reconstruction. Then, we propose a new weighti... 详细信息
来源: 评论
LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention
LiDAR-Based Online 3D Video Object Detection With Graph-Base...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Junbo Yin Jianbing Shen Chenye Guan Dingfu Zhou Ruigang Yang Beijing Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology China Baidu Research Inception Institute of Artificial Intelligence UAE National Engineering Laboratory of Deep Learning Technology and Application China University of Kentucky Kentucky USA
Existing LiDAR-based 3D object detectors usually focus on the single-frame detection, while ignoring the spatiotemporal information in consecutive point cloud frames. In this paper, we propose an end-to-end online 3D ... 详细信息
来源: 评论