咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 35 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 21 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 21 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地质学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 computer archite...
  • 5 篇 deep neural netw...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 encoding
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 large dataset
  • 3 篇 computerized tom...

机构

  • 26 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 northwestern pol...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 31 篇 guo guodong
  • 11 篇 zhang baochang
  • 11 篇 zhou dingfu
  • 10 篇 zhang liangjun
  • 10 篇 yang ruigang
  • 10 篇 fang jin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 song xibin
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 dai yuchao
  • 5 篇 zhu yu
  • 5 篇 xiong hui

语言

  • 123 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Applications"
125 条 记 录,以下是61-70 订阅
排序:
Incremental learning of Object Detector with Limited Training Data
Incremental Learning of Object Detector with Limited Trainin...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and applications (DICTA)
作者: Muhammad Abdullah Hafeez Adnan Ul-Hasan Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
State of the art deep learning models, despite being at par to the human level in some of the challenging tasks, still suffer badly when they are put in the condition where they have to learn with time. This open chal... 详细信息
来源: 评论
Enhancing Multimodal Information Extraction from Visually Rich Documents with 2D Positional Embeddings
Enhancing Multimodal Information Extraction from Visually Ri...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and applications (DICTA)
作者: Aresha Arshad Momina Moetesum Adnan Ul Hasan Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Visually rich document understanding involves the interpretation of documents with varied formats and complex layouts, including multi-line entities, presenting a significant challenge. This study addresses these chal... 详细信息
来源: 评论
Multi-Modal Face Presentation Attack Detection  1
收藏 引用
丛书名: Synthesis Lectures on Computer Vision
1000年
作者: Jun Wan Guodong Guo Sergio Escalera Hugo Jair Escalante Stan Z. Li
来源: 评论
Generalizing from a few examples: A survey on few-shot learning
arXiv
收藏 引用
arXiv 2019年
作者: WANG, YAQING YAO, QUANMING KWOK, JAMES T. NI, LIONEL M. Department of Computer Science and Engineering Hong Kong University of Science and Technology Business Intelligence Lab National Engineering Laboratory of Deep Learning Technology and Application Baidu Research 4Paradigm Inc.
Machine learning has been highly successful in data-intensive applications, but is often hampered when the data set is small. Recently, Few-Shot learning (FSL) is proposed to tackle this problem. Using prior knowledge... 详细信息
来源: 评论
RBCN: Rectified Binary convolutional networks for enhancing the Performance of 1-bit DCNNs
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei Ding, Wenrui Xia, Xin Hu, Yuan Zhang, Baochang Liu, Jianzhuang Zhuang, Bohan Guo, Guodong School of Electronic and Information Engineering Beihang University Unmanned System Research Institute Beihang University School of Automation Science and Electrical Engineering Beihang University Huawei Noah's Ark Lab University of Adelaide Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application
Binarized convolutional neural networks (BCNNs) are widely used to improve memory and computation efficiency of deep convolutional neural networks (DCNNs) for mobile and AI chips based applications. However, current B... 详细信息
来源: 评论
iffDetector: Inference-aware feature filtering for object detection
arXiv
收藏 引用
arXiv 2020年
作者: Mao, Mingyuan Tian, Yuxin Zhang, Baochang Ye, Qixiang Liu, Wanquan Guo, Guodong Doermann, David Beihang University Beijing China University of Chinese Academy of Sciences Beijing China Curtin University Perth Australia Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application University at Buffalo Buffalo United States
Modern CNN-based object detectors focus on feature configuration during training but often ignore feature optimization during inference. In this paper, we propose a new feature optimization approach to enhance feature... 详细信息
来源: 评论
Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Weijia Liu, Hao Liu, Yanchi Zhou, Jingbo Xiong, Hui University of Science and Technology of China Hefei China Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application Beijing China Rutgers University United States
The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can... 详细信息
来源: 评论
Bayesian Optimized 1-Bit CNNs
Bayesian Optimized 1-Bit CNNs
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Jiaxin Gu Junhe Zhao Xiaolong Jiang Baochang Zhang Jianzhuang Liu Guodong Guo Rongrong Ji Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah’s Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论
Bayesian optimized 1-Bit CNNs
arXiv
收藏 引用
arXiv 2019年
作者: Gu, Jiaxin Zhao, Junhe Jiang, Xiaolong Zhang, Baochang Liu, Jianzhuang Guo, Guodong Ji, Rongrong Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah's Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论
3D Part Guided Image Editing for Fine-Grained Object Understanding
3D Part Guided Image Editing for Fine-Grained Object Underst...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zongdai Liu Feixiang Lu Peng Wang Hui Miao Liangjun Zhang Ruigang Yang Bin Zhou State Key Laboratory of Virtual Reality Technology and Systems Beihang University Robotics and Autonomous Driving Laboratory Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China ByteDance Research University of Kentucky Peng Cheng Laboratory Shenzhen China
Holistically understanding an object with its 3D movable parts is essential for visual models of a robot to interact with the world. For example, only by understanding many possible part dynamics of other vehicles (e.... 详细信息
来源: 评论