咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 35 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 21 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 21 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地质学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 computer archite...
  • 5 篇 deep neural netw...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 encoding
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 large dataset
  • 3 篇 computerized tom...

机构

  • 26 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 northwestern pol...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 31 篇 guo guodong
  • 11 篇 zhang baochang
  • 11 篇 zhou dingfu
  • 10 篇 zhang liangjun
  • 10 篇 yang ruigang
  • 10 篇 fang jin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 song xibin
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 dai yuchao
  • 5 篇 zhu yu
  • 5 篇 xiong hui

语言

  • 123 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Applications"
125 条 记 录,以下是81-90 订阅
Interactive language acquisition with one-shot visual concept learning through a conversational game
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Haichao Yu, Haonan Xu, Wei Baidu Research - Institue of Deep Learning Sunnyvale United States National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
Building intelligent agents that can communicate with and learn from humans in natural language is of great value. Supervised language learning is limited by the ability of capturing mainly the statistics of training ... 详细信息
来源: 评论
Intelligent exploration for user interface modules of mobile app with collective learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Jingbo Tang, Zhenwei Zhao, Min Ge, Xiang Zhuang, Fuzhen Zhou, Meng Zou, Liming Yang, Chenglei Xiong, Hui Business Intelligence Lab Baidu Research Baidu TPG User Experience Department China National Engineering Laboratory of Deep Learning Technology and Application China Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Beijing University of Posts and Telecommunications China Peking University China Shandong University China Rutgers University United States
A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods ... 详细信息
来源: 评论
Every Pixel Counts: Unsupervised geometry learning with holistic 3d motion understanding
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Zhenheng Wang, Peng Wang, Yang Xu, Wei Nevatia, Ram University of Southern California Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
learning to estimate 3D geometry in a single image by watching unlabeled videos via deep convolutional network has made significant process recently. Current state-of-the-art (SOTA) methods, are based on the learning ... 详细信息
来源: 评论
Generalizing from a few examples: A survey on few-shot learning
arXiv
收藏 引用
arXiv 2019年
作者: WANG, YAQING YAO, QUANMING KWOK, JAMES T. NI, LIONEL M. Department of Computer Science and Engineering Hong Kong University of Science and Technology Business Intelligence Lab National Engineering Laboratory of Deep Learning Technology and Application Baidu Research 4Paradigm Inc.
Machine learning has been highly successful in data-intensive applications, but is often hampered when the data set is small. Recently, Few-Shot learning (FSL) is proposed to tackle this problem. Using prior knowledge... 详细信息
来源: 评论
RBCN: Rectified Binary convolutional networks for enhancing the Performance of 1-bit DCNNs
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei Ding, Wenrui Xia, Xin Hu, Yuan Zhang, Baochang Liu, Jianzhuang Zhuang, Bohan Guo, Guodong School of Electronic and Information Engineering Beihang University Unmanned System Research Institute Beihang University School of Automation Science and Electrical Engineering Beihang University Huawei Noah's Ark Lab University of Adelaide Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application
Binarized convolutional neural networks (BCNNs) are widely used to improve memory and computation efficiency of deep convolutional neural networks (DCNNs) for mobile and AI chips based applications. However, current B... 详细信息
来源: 评论
LEGO: learning edge with geometry all at once by watching videos
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Zhenheng Wang, Peng Wang, Yang Xu, Wei Nevatia, Ram University of Southern California Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
learning to estimate 3D geometry in a single image by watching unlabeled videos via deep convolutional network is attracting significant attention. In this paper, we introduce a "3D as-smooth-as-possible (3D-ASAP... 详细信息
来源: 评论
Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Weijia Liu, Hao Liu, Yanchi Zhou, Jingbo Xiong, Hui University of Science and Technology of China Hefei China Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application Beijing China Rutgers University United States
The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can... 详细信息
来源: 评论
A model-guided deep network for limited-angle computed tomography
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wei Xia, Xiang-Gen He, Chuanjiang Ren, Zemin Lu, Jian Wang, Tianfu Lei, Baiying School of Biomedical Engineering Shenzhen University National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States College of Mathematics and Statistics Chongqing University Chongqing China College of Mathematics and Physics Chongqing University of Science and Technology Chongqing China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
In this paper, we first propose a variational model for the limited-angle computed tomography (CT) image reconstruction and then convert the model into an end-to-end deep network. We use the penalty method to solve th... 详细信息
来源: 评论
Bayesian Optimized 1-Bit CNNs
Bayesian Optimized 1-Bit CNNs
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Jiaxin Gu Junhe Zhao Xiaolong Jiang Baochang Zhang Jianzhuang Liu Guodong Guo Rongrong Ji Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah’s Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论
Bayesian optimized 1-Bit CNNs
arXiv
收藏 引用
arXiv 2019年
作者: Gu, Jiaxin Zhao, Junhe Jiang, Xiaolong Zhang, Baochang Liu, Jianzhuang Guo, Guodong Ji, Rongrong Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah's Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论