咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议
  • 1 册 图书

馆藏范围

  • 133 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 91 篇 工学
    • 62 篇 计算机科学与技术...
    • 60 篇 软件工程
    • 23 篇 生物工程
    • 19 篇 光学工程
    • 19 篇 信息与通信工程
    • 13 篇 化学工程与技术
    • 11 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
  • 55 篇 理学
    • 23 篇 生物学
    • 20 篇 物理学
    • 19 篇 数学
    • 13 篇 化学
    • 7 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 2 篇 海洋科学
    • 1 篇 地质学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 3 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学

主题

  • 12 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 9 篇 training
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 computer archite...
  • 5 篇 face recognition
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 semantics
  • 4 篇 text analysis
  • 4 篇 computer vision
  • 4 篇 encoding
  • 4 篇 solid modeling
  • 3 篇 semantic segment...

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 5 篇 zhu yu
  • 5 篇 xia yong

语言

  • 131 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory of Deep Learning Technology an Application"
133 条 记 录,以下是91-100 订阅
排序:
Quasi-potential as an implicit regularizer for the loss function in the stochastic gradient descent.
arXiv
收藏 引用
arXiv 2019年
作者: Hu, Wenqing Zhu, Zhanxing Xiong, Haoyi Huan, Jun Department of Mathematics and Statistics Missouri University of Science and Technology University of Missouri Rolla Peking University Beijing Institute of Big Data Research Beijing China Big Data Lab Baidu Inc. National Engineering Laboratory of Deep Learning Application and Technology
We interpret the variational inference of the Stochastic Gradient Descent (SGD) as minimizing a new potential function named the quasi-potential. We analytically construct the quasi-potential function in the case when... 详细信息
来源: 评论
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
Joint 3D Instance Segmentation and Object Detection for Auto...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Dingfu Zhou Jin Fang Xibin Song Liu Liu Junbo Yin Yuchao Dai Hongdong Li Ruigang Yang Baidu Research National Engineering Laboratory of Deep Learning Technology and Application Beijing China Australian National University Canberra Australia Australian Centre for Robotic Vision Australia Beijing Institute of Technology Beijing China Northwestern Polytechnical University Xi'an China University of Kentucky Kentucky USA
Currently, in Autonomous Driving (AD), most of the 3D object detection frameworks (either anchor- or anchor-free-based) consider the detection as a Bounding Box (BBox) regression problem. However, this compact represe... 详细信息
来源: 评论
A Unified Object Motion and Affinity Model for Online Multi-Object Tracking
A Unified Object Motion and Affinity Model for Online Multi-...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Junbo Yin Wenguan Wang Qinghao Meng Ruigang Yang Jianbing Shen Beijing Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology China ETH Zurich Switzerland Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China University of Kentucky Kentucky USA Inception Institute of Artificial Intelligence UAE
Current popular online multi-object tracking (MOT) solutions apply single object trackers (SOTs) to capture object motions, while often requiring an extra affinity network to associate objects, especially for the occl... 详细信息
来源: 评论
View extrapolation of human body from a single image
arXiv
收藏 引用
arXiv 2018年
作者: Zhu, Hao Su, Hao Wang, Peng Cao, Xun Yang, Ruigang Nanjing University Nanjing China University of Kentucky LexingtonKY United States University of California San DiegoCA United States Baidu Inc. Beijing China National Engineering Laboratory of Deep Learning and Technology and Application China
We study how to synthesize novel views of human body from a single image. Though recent deep learning based methods work well for rigid objects, they often fail on objects with large articulation, like human bodies. T... 详细信息
来源: 评论
LiDAR-based online 3D video object detection with graph-based message passing and spatiotemporal transformer attention
arXiv
收藏 引用
arXiv 2020年
作者: Yin, Junbo Shen, Jianbing Guan, Chenye Zhou, Dingfu Yang, Ruigang Beijing Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology China Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China Inception Institute of Artificial Intelligence United Arab Emirates University of Kentucky Kentucky United States
Existing LiDAR-based 3D object detectors usually focus on the single-frame detection, while ignoring the spatiotemporal information in consecutive point cloud frames. In this paper, we propose an end-to-end online 3D ... 详细信息
来源: 评论
Rethinking Table Recognition using Graph Neural Networks
Rethinking Table Recognition using Graph Neural Networks
收藏 引用
International Conference on Document Analysis and Recognition
作者: Shah Rukh Qasim Hassan Mahmood Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Document structure analysis, such as zone segmentation and table recognition, is a complex problem in document processing and is an active area of research. The recent success of deep learning in solving various compu... 详细信息
来源: 评论
Table Structure Extraction with Bi-Directional Gated Recurrent Unit Networks
Table Structure Extraction with Bi-Directional Gated Recurre...
收藏 引用
International Conference on Document Analysis and Recognition
作者: Saqib Ali Khan Syed Muhammad Daniyal Khalid Muhammad Ali Shahzad Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Tables present summarized and structured information to the reader, which makes table's structure extraction an important part of document understanding applications. However, table structure identification is a h... 详细信息
来源: 评论
Incremental learning of Object Detector with Limited Training Data
Incremental Learning of Object Detector with Limited Trainin...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and applications (DICTA)
作者: Muhammad Abdullah Hafeez Adnan Ul-Hasan Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
State of the art deep learning models, despite being at par to the human level in some of the challenging tasks, still suffer badly when they are put in the condition where they have to learn with time. This open chal... 详细信息
来源: 评论
Enhancing Multimodal Information Extraction from Visually Rich Documents with 2D Positional Embeddings
Enhancing Multimodal Information Extraction from Visually Ri...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and applications (DICTA)
作者: Aresha Arshad Momina Moetesum Adnan Ul Hasan Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Visually rich document understanding involves the interpretation of documents with varied formats and complex layouts, including multi-line entities, presenting a significant challenge. This study addresses these chal... 详细信息
来源: 评论
Towards Making deep Transfer learning Never Hurt
Towards Making Deep Transfer Learning Never Hurt
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Ruosi Wan Haoyi Xiong Xingjian Li Zhanxing Zhu Jun Huan Big Data Laboratory Baidu Inc. Beijing China School of Mathematical Sciences Peking University Beijing China National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
Transfer learning have been frequently used to improve deep neural network training through incorporating weights of pre-trained networks as the starting-point of optimization for regularization. While deep transfer l...
来源: 评论