咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议
  • 1 册 图书

馆藏范围

  • 133 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 61 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 23 篇 生物工程
    • 19 篇 光学工程
    • 18 篇 信息与通信工程
    • 13 篇 化学工程与技术
    • 11 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 建筑学
    • 3 篇 电气工程
    • 3 篇 土木工程
    • 3 篇 船舶与海洋工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
  • 55 篇 理学
    • 24 篇 生物学
    • 20 篇 物理学
    • 19 篇 数学
    • 13 篇 化学
    • 7 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 2 篇 海洋科学
    • 1 篇 地质学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 4 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 农学

主题

  • 12 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 9 篇 training
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 computer archite...
  • 5 篇 face recognition
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 semantics
  • 4 篇 text analysis
  • 4 篇 computer vision
  • 4 篇 encoding
  • 4 篇 solid modeling
  • 3 篇 semantic segment...

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 5 篇 zhu yu
  • 5 篇 xia yong

语言

  • 131 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory of Deep Learning Technology an Application"
133 条 记 录,以下是11-20 订阅
排序:
IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image  15th
IAFA: Instance-Aware Feature Aggregation for 3D Object Detec...
收藏 引用
15th Asian Conference on Computer Vision, ACCV 2020
作者: Zhou, Dingfu Song, Xibin Dai, Yuchao Yin, Junbo Lu, Feixiang Liao, Miao Fang, Jin Zhang, Liangjun Baidu Research Beijing China National Engineering Laboratory of Deep Learning Technology and Application Beijing China Northwestern Polytechnical University Xi’an China Beijing Institute of Technology Beijing China
3D object detection from a single image is an important task in Autonomous Driving (AD), where various approaches have been proposed. However, the task is intrinsically ambiguous and challenging as single image depth ... 详细信息
来源: 评论
Few-Shot learning with Complex-valued Neural Networks  31
Few-Shot Learning with Complex-valued Neural Networks
收藏 引用
31st British Machine Vision Conference, BMVC 2020
作者: Liu, Zhen Zhang, Baochang Guo, Guodong Beihang University Beijing China Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application China
Feature representation is fundamental and attracts much attention in few-shot learning. Convolutional neural networks (CNNs) are among the best feature extractors so far in this field, which are successfully combined ... 详细信息
来源: 评论
Enhancing Multimodal Information Extraction from Visually Rich Documents with 2D Positional Embeddings
Enhancing Multimodal Information Extraction from Visually Ri...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and applications (DICTA)
作者: Aresha Arshad Momina Moetesum Adnan Ul Hasan Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Visually rich document understanding involves the interpretation of documents with varied formats and complex layouts, including multi-line entities, presenting a significant challenge. This study addresses these chal... 详细信息
来源: 评论
Recurrent Bilinear Optimization for Binary Neural Networks
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Sheng Li, Yanjing Wang, Tiancheng Ma, Teli Zhang, Baochang Gao, Peng Qiao, Yu Lü, Jinhu Guo, Guodong Beihang University Beijing China Shanghai Artificial Intelligence Laboratory Shanghai China Zhongguancun Laboratory Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Binary Neural Networks (BNNs) show great promise for real-world embedded devices. As one of the critical steps to achieve a powerful BNN, the scale factor calculation plays an essential role in reducing the performanc... 详细信息
来源: 评论
Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer
arXiv
收藏 引用
arXiv 2022年
作者: Li, Yanjing Xu, Sheng Zhang, Baochang Cao, Xianbin Gao, Peng Guo, Guodong Beihang University Beijing China Zhongguancun Laboratory Beijing China Shanghai Artificial Intelligence Laboratory Shanghai China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
The large pre-trained vision transformers (ViTs) have demonstrated remarkable performance on various visual tasks, but suffer from expensive computational and memory cost problems when deployed on resource-constrained... 详细信息
来源: 评论
A Representation Separation Perspective to Correspondences-free Unsupervised 3D Point Cloud Registration
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Zhiyuan Sun, Jiadai Dai, Yuchao Zhou, Dingfu Song, Xibin He, Mingyi School of Electronics and Information Northwestern Polytechnical University Xi’an China Baidu Research and National Engineering Laboratory Deep Learning Technology and Application Beijing China
3D point cloud registration in remote sensing field has been greatly advanced by deep learning based methods, where the rigid transformation is either directly regressed from the two point clouds (correspondences-free... 详细信息
来源: 评论
Region-level Contrastive and Consistency learning for Semi-Supervised Semantic Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Jianrong Wu, Tianyi Ding, Chuanghao Zhao, Hongwei Guo, Guodong College of Computer Science and Technology Jilin University Changchun China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China College of Software Jilin University Changchun China The Institute of Deep Learning Baidu Research China
Current semi-supervised semantic segmentation methods mainly focus on designing pixel-level consistency and contrastive regularization. However, pixel-level regularization is sensitive to noise from pixels with incorr... 详细信息
来源: 评论
Sparse to dense motion transfer for face image animation
arXiv
收藏 引用
arXiv 2021年
作者: Zhao, Ruiqi Wu, Tianyi Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Face image animation from a single image has achieved remarkable progress. However, it remains challenging when only sparse landmarks are available as the driving signal. Given a source face image and a sequence of sp... 详细信息
来源: 评论
Coarse-to-Fine Cascaded Networks with Smooth Predicting for Video Facial Expression Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Xue, Fanglei Tan, Zichang Zhu, Yu Ma, Zhongsong Guo, Guodong University of Chinese Academy of Sciences Beijing China Key Laboratory of Space Utilization Technology and Engineering Center for Space Utilization Chinese Academy of Sciences Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Facial expression recognition plays an important role in human-computer interaction. In this paper, we propose the Coarse-to-Fine Cascaded network with Smooth Predicting (CFC-SP) to improve the performance of facial e... 详细信息
来源: 评论
Vision Transformer with Attentive Pooling for Robust Facial Expression Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Xue, Fanglei Wang, Qiangchang Tan, Zichang Ma, Zhongsong Guo, Guodong University of Chinese Academy of Sciences The Key Laboratory of Space Utilization Technology and Engineering Center for Space Utilization Chinese Academy of Sciences Beijing China West Virginia University Morgantown United States Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Facial Expression Recognition (FER) in the wild is an extremely challenging task. Recently, some Vision Transformers (ViT) have been explored for FER, but most of them perform inferiorly compared to Convolutional Neur... 详细信息
来源: 评论