咨询与建议

限定检索结果

文献类型

  • 219 篇 会议
  • 150 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 370 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 189 篇 工学
    • 129 篇 计算机科学与技术...
    • 107 篇 软件工程
    • 55 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 28 篇 电气工程
    • 27 篇 光学工程
    • 22 篇 生物工程
    • 18 篇 机械工程
    • 16 篇 电子科学与技术(可...
    • 14 篇 交通运输工程
    • 12 篇 建筑学
    • 12 篇 土木工程
    • 11 篇 网络空间安全
    • 10 篇 生物医学工程(可授...
    • 9 篇 仪器科学与技术
    • 7 篇 化学工程与技术
    • 6 篇 测绘科学与技术
    • 5 篇 动力工程及工程热...
  • 84 篇 理学
    • 44 篇 数学
    • 27 篇 物理学
    • 27 篇 生物学
    • 19 篇 统计学(可授理学、...
    • 10 篇 化学
  • 44 篇 管理学
    • 29 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 8 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 教育学
    • 5 篇 教育学
  • 2 篇 文学
  • 2 篇 农学

主题

  • 17 篇 semantics
  • 15 篇 cameras
  • 15 篇 computer vision
  • 12 篇 object detection
  • 11 篇 training
  • 10 篇 feature extracti...
  • 9 篇 visualization
  • 9 篇 accuracy
  • 8 篇 three-dimensiona...
  • 8 篇 convolution
  • 8 篇 computational mo...
  • 8 篇 pattern recognit...
  • 8 篇 predictive model...
  • 7 篇 semantic segment...
  • 6 篇 reinforcement le...
  • 6 篇 deep learning
  • 6 篇 planning
  • 6 篇 lighting
  • 6 篇 benchmark testin...
  • 6 篇 trajectory

机构

  • 43 篇 national enginee...
  • 42 篇 national key lab...
  • 39 篇 national key lab...
  • 21 篇 national key lab...
  • 19 篇 national key lab...
  • 15 篇 microsoft resear...
  • 13 篇 institute of art...
  • 13 篇 institute of art...
  • 12 篇 school of softwa...
  • 12 篇 school of artifi...
  • 12 篇 national key lab...
  • 11 篇 national enginee...
  • 10 篇 ai innovation ce...
  • 9 篇 shunan academy o...
  • 9 篇 national key lab...
  • 9 篇 national key lab...
  • 8 篇 wormpex ai resea...
  • 8 篇 shunan academy o...
  • 8 篇 national enginee...
  • 7 篇 university of sc...

作者

  • 67 篇 nanning zheng
  • 65 篇 zheng nanning
  • 29 篇 boxin shi
  • 28 篇 jingmin xin
  • 27 篇 shitao chen
  • 27 篇 shi boxin
  • 22 篇 zhou sanping
  • 20 篇 chen badong
  • 18 篇 xin jingmin
  • 17 篇 shaoyi du
  • 14 篇 sanping zhou
  • 14 篇 du shaoyi
  • 14 篇 chen shitao
  • 11 篇 wang le
  • 11 篇 weiliang zuo
  • 10 篇 tian zhiqiang
  • 9 篇 le wang
  • 9 篇 badong chen
  • 9 篇 zuo weiliang
  • 9 篇 jiamin shi

语言

  • 350 篇 英文
  • 17 篇 其他
  • 4 篇 中文
检索条件"机构=National Engineering Laboratory of Visual Information Processing Applications"
370 条 记 录,以下是11-20 订阅
排序:
MSE-LVIO: Multi-Modal Semantic-Enhanced LiDAR-visual-Inertial Odometry in Dynamic Traffic Scenes  27
MSE-LVIO: Multi-Modal Semantic-Enhanced LiDAR-Visual-Inertia...
收藏 引用
27th IEEE International Conference on Intelligent Transportation Systems, ITSC 2024
作者: Wang, Dan Zhu, Ziyu Hai, Renwei Shen, Yanqing Xin, Jingmin Zheng, Nanning National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University National Key Laboratory of Human-Machine Hybrid Augmented Intelligence Shaanxi Xi'an710049 China
Reliable localization and mapping are the key technologies for autonomous driving. In complex and dynamic traffic scenarios, a single sensor cannot provide sufficient information to achieve reliable and accurate Simul... 详细信息
来源: 评论
Refiner: Fine-grained Cross-modal Concepts Refinement for Compositional Zero-Shot Learning
Refiner: Fine-grained Cross-modal Concepts Refinement for Co...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal processing, ICASSP 2025
作者: Zhang, Xiao Jing, Haodong Chen, Hui Ma, Yongqiang Zheng, Nanning National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Shaanxi China
Recent Compositional Zero-Shot Learning (CZSL) methods increasingly adopt the pre-trained vision-language models to capture the contextual relations between image and text spaces. However, the single-class-token desig... 详细信息
来源: 评论
EFormer-VPR: Fusing Events and Frames with Transformer for visual Place Recognition  27
EFormer-VPR: Fusing Events and Frames with Transformer for V...
收藏 引用
27th IEEE International Conference on Intelligent Transportation Systems, ITSC 2024
作者: Zhang, Yangjing Shen, Yanqing Zhu, Ziyu Hai, Renwei Chen, Shitao Zheng, Nanning National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University National Key Laboratory of Human-Machine Hybrid Augmented Intelligence Shaanxi Xi'an710049 China
visual place recognition (VPR) is a challenging task faced by mobile robots and autonomous driving systems. In scenarios with glare or high-speed motion, image blurring makes it difficult for traditional cameras to pe... 详细信息
来源: 评论
Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement  38
Diffusion Model with Cross Attention as an Inductive Bias fo...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Yang, Tao Lan, Cuiling Lu, Yan Zheng, Nanning National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University China Microsoft Research Asia China
Disentangled representation learning strives to extract the intrinsic factors within the observed data. Factoring these representations in an unsupervised manner is notably challenging and usually requires tailored lo...
来源: 评论
Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction  41
Self-Consistency Training for Density-Functional-Theory Hami...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Zhang, He Liu, Chang Wang, Zun Wei, Xinran Liu, Siyuan Zheng, Nanning Shao, Bin Liu, Tie-Yan National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University China Microsoft Research AI for Science United States
Predicting the mean-field Hamiltonian matrix in density functional theory is a fundamental formulation to leverage machine learning for solving molecular science ***, its applicability is limited by insufficient label... 详细信息
来源: 评论
Measuring Mutual Policy Divergence for Multi-Agent Sequential Exploration  38
Measuring Mutual Policy Divergence for Multi-Agent Sequentia...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Dou, Haowen Dang, Lujuan Luan, Zhirong Chen, Badong National Key Laboratory of Human-Machine Hybrid Augmented Intelligence China National Engineering Research Center for Visual Information and Applications China Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University China School of Electrical Engineering Xi'an University of Technology China
Despite the success of Multi-Agent Reinforcement Learning (MARL) algorithms in cooperative tasks, previous works, unfortunately, face challenges in heterogeneous scenarios since they simply disable parameter sharing f...
来源: 评论
Make Your LLM Fully Utilize the Context  38
Make Your LLM Fully Utilize the Context
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: An, Shengnan Ma, Zexiong Lin, Zeqi Zheng, Nanning Lou, Jian-Guang Chen, Weizhu National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center of Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University China Microsoft United States Peking University China
While many contemporary large language models (LLMs) can process lengthy input, they still struggle to fully utilize information within the long context, known as the lost-in-the-middle challenge. We hypothesize that ...
来源: 评论
Can LLMs Learn From Mistakes? An Empirical Study on Reasoning Tasks
Can LLMs Learn From Mistakes? An Empirical Study on Reasonin...
收藏 引用
2024 Conference on Empirical Methods in Natural Language processing, EMNLP 2024
作者: An, Shengnan Ma, Zexiong Cai, Siqi Lin, Zeqi Zheng, Nanning Lou, Jian-Guang Chen, Weizhu National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center of Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University China Microsoft United States Peking University China
Towards enhancing the chain-of-thought (CoT) reasoning of large language models (LLMs), much existing work has revealed the effectiveness of straightforward learning on annotated/generated CoT paths. However, there is... 详细信息
来源: 评论
Parking Space Recognition Methods Based on visual Image and Deep Learning
Parking Space Recognition Methods Based on Visual Image and ...
收藏 引用
2023 China Automation Congress, CAC 2023
作者: Deng, Siyi Xia, Yuchen Zuo, Weiliang Xin, Jingmin Zhou, Sanping Zheng, Nanning Institute of Artificial Intelligence and Robotics Xi'An Jiaotong University National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Xi'an China
Parking space recognition technology is of great significance for intelligent parking lot management. To address the shortcomings of current parking lot management methods, we conducted research and practice on parkin... 详细信息
来源: 评论
SUNOD: Synthetic Underwater Non-Natural Object Detection Dataset
SUNOD: Synthetic Underwater Non-Natural Object Detection Dat...
收藏 引用
2023 China Automation Congress, CAC 2023
作者: Xia, Yuchen Deng, Siyi Li, Yuxi Zuo, Weiliang Xin, Jingmin Zheng, Nanning Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Xi'an China
Deep-learning-based non-natural object detection in complex underwater environments is widely needed in many application scenarios. However, obtaining image data of underwater non-natural objects is difficult, so ther... 详细信息
来源: 评论