In this paper, PA6-g-SMA was prepared via a solution graft reaction between SMA and PA6. The effect of SMA concentration, reaction temperature and reaction time on grafting ratio of PA6-g-SMA and its melting point wer...
详细信息
In this paper, PA6-g-SMA was prepared via a solution graft reaction between SMA and PA6. The effect of SMA concentration, reaction temperature and reaction time on grafting ratio of PA6-g-SMA and its melting point were discussed. The experimental results showed that reaction temperature was a key factor that effected on grafting ratio and the melting point of PA6-g-SMA decreased obviously when its grafting ratio increased. The melting point of PA6-g-SMA decreased to 193.5°C when its grafting ratio reach at 5.12%.
The viscoelastic properties of melts of nanocomposites with partially exfoliated structures, which were composed of low-density polyethylene (LDPE), ethylene vinyl acetate copolymer (EVA), and montmofillonite and ...
详细信息
The viscoelastic properties of melts of nanocomposites with partially exfoliated structures, which were composed of low-density polyethylene (LDPE), ethylene vinyl acetate copolymer (EVA), and montmofillonite and modified by cetyltrimethyl ammonium bromide and octadecyltrimethyl ammonium bromide, were studied. The results obtained through measurements of the dynamic storage modulus G′, the dynamic loss modulus G″, and the transiem stress relaxation modulus G(t) of the composites, reveal that the viscoelastic properties of the composites strongly depend on the amount of montmorillonite that is exfoliated into the composites. With the increase in montmoriUonite content, the composites show an obvious property of pseudo solid-like materials within the region of lower frequencies (ω). The montmorillonite layers are aligned along the stress direction, and the dependence of dynamic modulus on ω, appears quite different for the composites before and after being exposed to a large amplitude oscillatory shears.
A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilic...
详细信息
A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacrylexy propyltrimethoxysilane ( MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate( SDS), hydroxypropyl methyl cellulose ( HMPC), and poly (vinylpyrrolidone) (PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0. 5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to 278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FrIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.
暂无评论