咨询与建议

限定检索结果

文献类型

  • 1,210 篇 会议
  • 845 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 2,060 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,471 篇 工学
    • 1,181 篇 计算机科学与技术...
    • 981 篇 软件工程
    • 268 篇 信息与通信工程
    • 197 篇 控制科学与工程
    • 143 篇 生物工程
    • 91 篇 电子科学与技术(可...
    • 87 篇 电气工程
    • 83 篇 机械工程
    • 77 篇 光学工程
    • 61 篇 生物医学工程(可授...
    • 50 篇 动力工程及工程热...
    • 43 篇 仪器科学与技术
    • 43 篇 化学工程与技术
    • 34 篇 建筑学
    • 31 篇 网络空间安全
    • 30 篇 土木工程
    • 29 篇 安全科学与工程
  • 641 篇 理学
    • 401 篇 数学
    • 150 篇 生物学
    • 121 篇 统计学(可授理学、...
    • 118 篇 物理学
    • 86 篇 系统科学
    • 50 篇 化学
  • 437 篇 管理学
    • 261 篇 管理科学与工程(可...
    • 192 篇 图书情报与档案管...
    • 78 篇 工商管理
  • 46 篇 法学
    • 36 篇 社会学
  • 41 篇 医学
    • 38 篇 临床医学
    • 33 篇 基础医学(可授医学...
  • 26 篇 经济学
    • 26 篇 应用经济学
  • 16 篇 教育学
  • 15 篇 农学
  • 9 篇 艺术学
  • 6 篇 文学
  • 4 篇 军事学

主题

  • 78 篇 computer science
  • 52 篇 semantics
  • 43 篇 laboratories
  • 40 篇 feature extracti...
  • 39 篇 wireless sensor ...
  • 31 篇 optimization
  • 30 篇 software
  • 29 篇 data mining
  • 28 篇 software testing
  • 27 篇 computational mo...
  • 27 篇 algorithm design...
  • 27 篇 protocols
  • 27 篇 web services
  • 25 篇 image segmentati...
  • 24 篇 routing
  • 24 篇 software enginee...
  • 24 篇 testing
  • 24 篇 accuracy
  • 23 篇 monitoring
  • 23 篇 training

机构

  • 528 篇 state key labora...
  • 221 篇 department of co...
  • 131 篇 national key lab...
  • 108 篇 state key labora...
  • 79 篇 state key lab. f...
  • 56 篇 national key lab...
  • 55 篇 state key labora...
  • 51 篇 state key labora...
  • 51 篇 state key lab fo...
  • 48 篇 national key lab...
  • 40 篇 department of co...
  • 36 篇 school of artifi...
  • 31 篇 department of co...
  • 29 篇 faculty of compu...
  • 28 篇 computer vision ...
  • 27 篇 department of co...
  • 25 篇 department of co...
  • 25 篇 school of electr...
  • 22 篇 nanjing universi...
  • 22 篇 school of comput...

作者

  • 40 篇 dou wanchun
  • 37 篇 li wu-jun
  • 36 篇 guihai chen
  • 33 篇 sanglu lu
  • 31 篇 zhang lijun
  • 30 篇 shen furao
  • 30 篇 lu tong
  • 29 篇 zhao jian
  • 29 篇 tong lu
  • 28 篇 gao yang
  • 25 篇 yang tianbao
  • 25 篇 xu chang
  • 24 篇 qi lianyong
  • 23 篇 xu xiaolong
  • 23 篇 zhang xuyun
  • 22 篇 zhou zhi-hua
  • 22 篇 zhang yan
  • 22 篇 chen guihai
  • 22 篇 palaiahnakote sh...
  • 21 篇 xuandong li

语言

  • 1,894 篇 英文
  • 103 篇 其他
  • 62 篇 中文
  • 2 篇 德文
检索条件"机构=National Key Lab of Novel Software Technology and Department of Computer Science and Technology"
2060 条 记 录,以下是431-440 订阅
排序:
Attention-Based Knowledge-aware Multi-Interest Intelligent Model for Sequential Recommendation
Attention-Based Knowledge-aware Multi-Interest Intelligent M...
收藏 引用
Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC
作者: Yang Li Qianmu Li Shunmei Meng Jun Hou School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China Intelligent Manufacturing Department Wuyi University Jiangmen China State Key Lab. for Novel Software Technology Nanjing University Nanjing China School of Social Science Nanjing Vocational University of Industry Technology Nanjing China
As a fundamental means of intelligent service, recommender systems have shown a trend of diversification. Sequential recommendation, a class of time-aware methods, aims to predict the user’s next click. Multi-interes...
来源: 评论
Your Transformer May Not be as Powerful as You Expect  36
Your Transformer May Not be as Powerful as You Expect
收藏 引用
36th Conference on Neural Information Processing Systems, NeurIPS 2022
作者: Luo, Shengjie Li, Shanda Zheng, Shuxin Liu, Tie-Yan Wang, Liwei He, Di National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States Microsoft Research United States Center for Data Science Peking University China Zhejiang Lab China
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding... 详细信息
来源: 评论
RandoMix: A Mixed Sample Data Augmentation Method with Multiple Mixed Modes
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xiaoliang Shen, Furao Zhao, Jian Nie, Changhai State Key Laboratory for Novel Software Technology Nanjing University China Department of Computer Science and Technology Nanjing University China School of Artificial Intelligence Nanjing University China School of Electronic Science and Engineering Nanjing University China
Data augmentation plays a crucial role in enhancing the robustness and performance of machine learning models across various domains. In this study, we introduce a novel mixed-sample data augmentation method called Ra... 详细信息
来源: 评论
Newton-Cotes Graph Neural Networks: On the Time Evolution of Dynamic Systems
arXiv
收藏 引用
arXiv 2023年
作者: Guo, Lingbing Wang, Weiqing Chen, Zhuo Zhang, Ningyu Sun, Zequn Lai, Yixuan Zhang, Qiang Chen, Huajun College of Computer Science and Technology Zhejiang University China Zhejiang University Ant Group Joint Laboratory of Knowledge Graph China ZJU-Hangzhou Global Scientific and Technological Innovation Center China Department of Data Science & AI Monash University Australia State Key Laboratory for Novel Software Technology Nanjing University China
Reasoning system dynamics is one of the most important analytical approaches for many scientific studies. With the initial state of a system as input, the recent graph neural networks (GNNs)-based methods are capable ... 详细信息
来源: 评论
Image Data Augmentation for Deep Learning: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Suorong Xiao, Weikang Zhang, Mengchen Guo, Suhan Zhao, Jian Shen, Furao State Key Laboratory for Novel Software Technology Nanjing University China Department of Computer Science and Technology Nanjing University China School of Artificial Intelligence Nanjing University China School of Electronic Science and Engineering Nanjing University China
Deep learning has achieved remarkable results in many computer vision tasks. Deep neural networks typically rely on large amounts of training data to avoid overfitting. However, labeled data for real-world application... 详细信息
来源: 评论
Sensitivity Pruner: Filter-Level Deep Neural Network Compression
SSRN
收藏 引用
SSRN 2022年
作者: Guo, Suhan Lai, Bilan Yang, Suorong Zhao, Jian Shen, Furao State Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China Department of Computer Science and Technology Nanjing University China School of Electronic Science and Engineering Nanjing University China
As neural networks get deeper to better higher performance, the demand for deployable models on resource-constrained devices also grows. In this work, we propose to achieve model compression using filter-level pruning... 详细信息
来源: 评论
In2NeCT: Inter-class and Intra-class Neural Collapse Tuning for Semantic Segmentation of Imbalanced Remote Sensing Images  39
In2NeCT: Inter-class and Intra-class Neural Collapse Tuning ...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Shen, Junao Hu, Qiyun Feng, Tian Wang, Xinyu Cui, Hui Wu, Sensen Zhang, Wei School of Software Technology Zhejiang University China State Key Lab of CAD&CG Zhejiang University China Department of Computer Science and Information Technology La Trobe University Australia School of Earth Sciences Zhejiang University China Innovation Center of Yangtze River Delta Zhejiang University China
Remote sensing images (RSIs) are frequently characterized by multi-scale inter-class objects and inconsistently distributed objects due to scene limitations, which would cause a significant data imbalance challenging ... 详细信息
来源: 评论
Federated Deep Recommendation System Based on Multi-View Feature Embedding
Federated Deep Recommendation System Based on Multi-View Fea...
收藏 引用
International Conference on Data science and Advanced Analytics (DSAA)
作者: Xinna Wang Shunmei Meng Yanran Chen Qiyan Liu Rui Yuan Qianmu Li Department of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Business School University of Auckland Auckland New Zealand Computer Engineering University of Toronto Toronto Canada
The application of recommendation systems online services is becoming more and more extensive. However, most existing recommendation algorithms centralize multi-party information into a central processor, which may le... 详细信息
来源: 评论
Program Repair: Automated vs. Manual
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Quanjun Zhao, Yuan Sun, Weisong Fang, Chunrong Wang, Ziyuan Zhang, Lingming The State Key Laboratory for Novel Software Technology Nanjing University China Nanjing University of Posts and Telecommunications China Department of Computer Science University of Illinois at Urbana-Champaign United States
Various automated program repair (APR) techniques have been proposed to fix bugs automatically in the last decade. Although recent researches have made significant progress on the effectiveness and efficiency, it is s... 详细信息
来源: 评论
Lens-to-Lens Bokeh Effect Transformation. NTIRE 2023 Challenge Report
Lens-to-Lens Bokeh Effect Transformation. NTIRE 2023 Challen...
收藏 引用
2023 IEEE/CVF Conference on computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Conde, Marcos V. Kolmet, Manuel Seizinger, Tim Bishop, Tom E. Timofte, Radu Kong, Xiangyu Zhang, Dafeng Wu, Jinlong Wang, Fan Peng, Juewen Pan, Zhiyu Liu, Chengxin Luo, Xianrui Sun, Huiqiang Shen, Liao Cao, Zhiguo Xian, Ke Liu, Chaowei Chen, Zigeng Yang, Xingyi Liu, Songhua Jing, Yongcheng Mi, Michael Bi Wang, Xinchao Yang, Zhihao Lian, Wenyi Lai, Siyuan Zhang, Haichuan Hoang, Trung Yazdani, Amirsaeed Monga, Vishal Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Zhao, Yuxuan Chen, Baoliang Xu, Yiqing Niu, Jixiang Computer Vision Lab CAIDAS IFI University of Würzburg Germany Glass Imaging Inc. China Huazhong University of Science and Technology China Nanyang Technological University Singapore National University of Singapore Singapore University of Sydney Australia Huawei Uppsala University Sweden Department of Electrical Engineering Pennsylvania State University United States Department of Information Technology Uppsala University Sweden Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education Xidian University Xi'an China North China University of Technology China
We present the new Bokeh Effect Transformation Dataset (BETD), and review the proposed solutions for this novel task at the NTIRE 2023 Bokeh Effect Transformation Challenge. Recent advancements of mobile photography a... 详细信息
来源: 评论