咨询与建议

限定检索结果

文献类型

  • 845 篇 会议
  • 293 篇 期刊文献

馆藏范围

  • 1,138 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 727 篇 工学
    • 572 篇 计算机科学与技术...
    • 419 篇 软件工程
    • 130 篇 信息与通信工程
    • 81 篇 电子科学与技术(可...
    • 76 篇 控制科学与工程
    • 55 篇 生物工程
    • 54 篇 机械工程
    • 41 篇 电气工程
    • 25 篇 动力工程及工程热...
    • 24 篇 仪器科学与技术
    • 21 篇 化学工程与技术
    • 18 篇 材料科学与工程(可...
    • 15 篇 网络空间安全
    • 14 篇 土木工程
    • 12 篇 力学(可授工学、理...
    • 12 篇 建筑学
    • 12 篇 农业工程
    • 11 篇 交通运输工程
    • 11 篇 环境科学与工程(可...
  • 279 篇 理学
    • 176 篇 数学
    • 58 篇 生物学
    • 47 篇 物理学
    • 39 篇 统计学(可授理学、...
    • 38 篇 系统科学
    • 22 篇 化学
  • 185 篇 管理学
    • 124 篇 管理科学与工程(可...
    • 64 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 18 篇 法学
    • 15 篇 社会学
  • 17 篇 经济学
    • 17 篇 应用经济学
  • 13 篇 农学
  • 9 篇 教育学
  • 7 篇 医学
  • 3 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 46 篇 distributed proc...
  • 44 篇 laboratories
  • 42 篇 computational mo...
  • 31 篇 kernel
  • 29 篇 algorithm design...
  • 28 篇 concurrent compu...
  • 28 篇 computer archite...
  • 27 篇 graphics process...
  • 27 篇 benchmark testin...
  • 25 篇 fault tolerance
  • 25 篇 hardware
  • 24 篇 feature extracti...
  • 23 篇 throughput
  • 23 篇 semantics
  • 22 篇 servers
  • 22 篇 cloud computing
  • 21 篇 parallel process...
  • 21 篇 protocols
  • 21 篇 training
  • 20 篇 deep learning

机构

  • 169 篇 national laborat...
  • 134 篇 science and tech...
  • 103 篇 college of compu...
  • 88 篇 national laborat...
  • 81 篇 national laborat...
  • 38 篇 school of comput...
  • 38 篇 national laborat...
  • 29 篇 national key lab...
  • 22 篇 science and tech...
  • 22 篇 national key lab...
  • 21 篇 national key lab...
  • 18 篇 national laborat...
  • 16 篇 national laborat...
  • 16 篇 laboratory of di...
  • 15 篇 national univers...
  • 14 篇 national laborat...
  • 13 篇 national key lab...
  • 13 篇 school of comput...
  • 12 篇 national key lab...
  • 11 篇 national key lab...

作者

  • 42 篇 yong dou
  • 42 篇 wang huaimin
  • 39 篇 li dongsheng
  • 38 篇 dou yong
  • 37 篇 liu jie
  • 37 篇 wang ji
  • 36 篇 dongsheng li
  • 36 篇 huaimin wang
  • 35 篇 ji wang
  • 31 篇 jie liu
  • 30 篇 yijie wang
  • 29 篇 xiaodong wang
  • 29 篇 wang yijie
  • 26 篇 peng yuxing
  • 26 篇 yin gang
  • 25 篇 yuxing peng
  • 25 篇 gang yin
  • 22 篇 tao wang
  • 21 篇 zhigang luo
  • 21 篇 xingming zhou

语言

  • 1,065 篇 英文
  • 63 篇 中文
  • 10 篇 其他
检索条件"机构=National Key Laboratory for Parallel and Distributed Processing"
1138 条 记 录,以下是121-130 订阅
排序:
Efficient Large Models Fine-tuning on Commodity Servers via Memory-balanced Pipeline parallelism
Efficient Large Models Fine-tuning on Commodity Servers via ...
收藏 引用
IEEE International Conference on High Performance Computing and Communications (HPCC)
作者: Yujie Liu Zhiquan Lai Weijie Liu Wei Wang Dongsheng Li National Key Laboratory of Parallel and Distributed Computing College of Computer National University of Defense Technology Changsha China
Large models have achieved impressive performance in many downstream tasks. Using pipeline parallelism to fine-tune large models on commodity GPU servers is an important way to make the excellent performance of large ...
来源: 评论
The parallelized Cuckoo Filter for Cold Data Representation  23
The Parallelized Cuckoo Filter for Cold Data Representation
收藏 引用
23rd IEEE International Conference on High Performance Computing and Communications, 7th IEEE International Conference on Data Science and Systems, 19th IEEE International Conference on Smart City and 7th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Applications, HPCC-DSS-SmartCity-DependSys 2021
作者: Sun, Bowen Luo, Lailong Li, Shangsen Chen, Yingwen Guo, Deke College of Computer National University of Defense Technology China National University of Defense Technology Science and Technology on Information Systems Engineering Laboratory China College of Computer National University of Defense Technology National Lab for Parallel and Distributed Processing China
Cold data contributes a large portion of the big data today and is usually stored in secondary storage. Various sketch data structures are implemented to represent the stored elements and provide constant-time members... 详细信息
来源: 评论
Evaluating a New Attention Framework Based on Matrix Blocking for Attention Models on FPGAs
Evaluating a New Attention Framework Based on Matrix Blockin...
收藏 引用
International Conference on Tools for Artificial Intelligence (ICTAI)
作者: Xiaohang Liu Jingfei Jiang Jinwei Xu Lei Gao National Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha China
The attention mechanism has recently shown superior performance in natural language processing and computer vision tasks. But its complex dataflow and large-scale matrix calculation with huge computing and memory over... 详细信息
来源: 评论
An empirical study on the structure evolution of deep learning models: taking SAR image processing a case study
An empirical study on the structure evolution of deep learni...
收藏 引用
IEEE International Conference on Joint Cloud Computing (JCC)
作者: Huanxi Liu Xiang He Dawei Feng Han Bao National Laboratory for Parallel and Distributed Processing (PDL) National University of Defense Technology China School of Information and Communication National University of Defense Technology China
With the continuous improvement on model performance, deep learning models have been widely deployed and achieved promising outcomes in various fields in recent years. However, due to the escalating volumes of trainin...
来源: 评论
DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for Domain Adaptation
arXiv
收藏 引用
arXiv 2023年
作者: Lu, Menglong Huang, Zhen Zhao, Yunxiang Tian, Zhiliang Liu, Yang Li, Dongsheng National Key Laboratory of Parallel and Distributed Computing National University of Defense Technology China Beijing Institute of Biotechnology China
Self-training emerges as an important research line on domain adaptation. By taking the model’s prediction as the pseudo labels of the unlabeled data, self-training bootstraps the model with pseudo instances in the t... 详细信息
来源: 评论
DMSA: Decentralized and Multi-keyword Selective Data Sharing and Acquisition
DMSA: Decentralized and Multi-keyword Selective Data Sharing...
收藏 引用
International Symposium on parallel and distributed processing with Applications, ISPA
作者: Moheng Lin Peichang Shi Xiang Fu Feng Jiang Guodong Yi National Key Laboratory of Parallel and Distributed Computing College of Computer Science National University of Defense Technology Changsha China Xiangjiang Lab Changsha China
Blockchain technology has been extensively uti-lized in decentralized data-sharing applications, with the immutability of blockchain providing a witness for the circulation of data. However, current blockchain data-sh... 详细信息
来源: 评论
HAF: a hybrid annotation framework based on expert knowledge and learning technique
收藏 引用
Science China(Information Sciences) 2022年 第1期65卷 276-278页
作者: Zhixing LI Yue YU Tao WANG Gang YIN Xinjun MAO Huaimin WANG Key Laboratory of Parallel and Distributed Computing National University of Defense Technology College of Computer National University of Defense Technology
Dear editor,The increasing awareness of the potential value hidden in data has resulted in many data mining studies being conducted. In the domain of software engineering, for example, developers' behavioral data ...
来源: 评论
A survey of script learning
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2021年 第3期22卷 341-373页
作者: Yi HAN Linbo QIAO Jianming ZHENG Hefeng WU Dongsheng LI Xiangke LIAO Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense TechnologyChangsha 410000China Science and Technology on Information Systems Engineering Laboratory National University of Defense TechnologyChangsha 410000China School of Data and Computer Science Sun Yat-sen UniversityGuangzhou 510006China
Script is the structured knowledge representation of prototypical real-life event *** the commonsense knowledge inside the script can be helpful for machines in understanding natural language and drawing commonsensibl... 详细信息
来源: 评论
A prompt-based approach to adversarial example generation and robustness enhancement
收藏 引用
Frontiers of Computer Science 2024年 第4期18卷 85-96页
作者: Yuting YANG Pei HUANG Juan CAO Jintao LI Yun LIN Feifei MA Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing TechnologyCASBeijing 100190China School of Computer Science and Technology University of Chinese Academy of SciencesBeijing 100049China Department of Computer Science Stanford UniversityCA 94305USA School of Computing National University of SingaporeSingapore 119077Singapore Laboratory of Parallel Software and Computational Science Institute of SoftwareChinese Academy of SciencesBeijing 100190China
Recent years have seen the wide application of natural language processing(NLP)models in crucial areas such as finance,medical treatment,and news media,raising concerns about the model robustness and *** find that pro... 详细信息
来源: 评论
F3A: Fairness-Aware AI-Workloads Allocation Considering Multidimensional User Demands in JointCloud
F3A: Fairness-Aware AI-Workloads Allocation Considering Mult...
收藏 引用
IEEE International Conference on Joint Cloud Computing (JCC)
作者: Jiacheng Yang Guodong Yi Fei Gao Peichang Shi Huaimin Wang National Key Laboratory of Parallel and Distributed Processing College of Computer Science National University of Defense Technology Changsha China Xiangjiang Lab Changsha China School of Advanced Interdisciplinary Studies Hunan University Of Technology and Business Changsha China
With the rapid growth of large language models, cloud computing has become an indispensable component of the AI industry. Cloud service providers(CSPs) are establishing AI data centers to service AI workloads. In the ... 详细信息
来源: 评论