咨询与建议

限定检索结果

文献类型

  • 292 篇 会议
  • 128 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 422 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 276 篇 工学
    • 223 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 68 篇 信息与通信工程
    • 41 篇 控制科学与工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 电气工程
    • 24 篇 生物工程
    • 20 篇 机械工程
    • 13 篇 仪器科学与技术
    • 11 篇 动力工程及工程热...
    • 8 篇 化学工程与技术
    • 8 篇 农业工程
    • 8 篇 网络空间安全
    • 6 篇 土木工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 4 篇 冶金工程
    • 4 篇 建筑学
  • 118 篇 理学
    • 76 篇 数学
    • 26 篇 生物学
    • 19 篇 系统科学
    • 18 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 11 篇 化学
  • 80 篇 管理学
    • 49 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 9 篇 法学
    • 6 篇 社会学
  • 9 篇 农学
    • 8 篇 作物学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 医学
  • 3 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 16 篇 computational mo...
  • 13 篇 feature extracti...
  • 12 篇 deep learning
  • 12 篇 distributed proc...
  • 10 篇 computer archite...
  • 10 篇 semantics
  • 9 篇 laboratories
  • 8 篇 computer science
  • 8 篇 conferences
  • 8 篇 scalability
  • 8 篇 concurrent compu...
  • 8 篇 fault tolerance
  • 8 篇 kernel
  • 7 篇 application soft...
  • 7 篇 anomaly detectio...
  • 7 篇 neural networks
  • 7 篇 predictive model...
  • 7 篇 benchmark testin...
  • 7 篇 costs
  • 7 篇 machine learning

机构

  • 37 篇 national laborat...
  • 36 篇 science and tech...
  • 26 篇 college of compu...
  • 22 篇 national key lab...
  • 21 篇 school of comput...
  • 14 篇 science and tech...
  • 14 篇 national laborat...
  • 13 篇 school of comput...
  • 12 篇 national key lab...
  • 11 篇 national key lab...
  • 10 篇 national laborat...
  • 9 篇 national laborat...
  • 8 篇 national key lab...
  • 8 篇 national key lab...
  • 7 篇 xiangjiang lab
  • 7 篇 national laborat...
  • 6 篇 national key lab...
  • 6 篇 college of compu...
  • 6 篇 school of softwa...
  • 6 篇 laboratory of di...

作者

  • 18 篇 wang yijie
  • 16 篇 yijie wang
  • 15 篇 peng yuxing
  • 14 篇 wang huaimin
  • 12 篇 jie liu
  • 10 篇 liu jie
  • 10 篇 huaimin wang
  • 9 篇 yuxing peng
  • 8 篇 peichang shi
  • 8 篇 hangjun zhou
  • 8 篇 ding bo
  • 8 篇 fu yongquan
  • 7 篇 dongsheng li
  • 7 篇 qinglin wang
  • 7 篇 yin gang
  • 6 篇 zhou hangjun
  • 6 篇 shi peichang
  • 6 篇 wang huai-min
  • 6 篇 wang yi-jie
  • 6 篇 sikun li

语言

  • 391 篇 英文
  • 26 篇 中文
  • 5 篇 其他
检索条件"机构=National Key Laboratory for Parallel and Distributed Processing School of Computer Science"
422 条 记 录,以下是61-70 订阅
VisionEmbedder: Bit-Level-Compact key-Value Storage with Constant Lookup, Rapid Updates, and Rare Failure
VisionEmbedder: Bit-Level-Compact Key-Value Storage with Con...
收藏 引用
International Conference on Data Engineering
作者: Yuhan Wu Feiyu Wang Yifan Zhu Zhuochen Fan Zhiting Xiong Tong Yang Bin Cui National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University Beijing China College of Computer National University of Defense Technology Changsha China
In key-value storage scenarios where storage space is at a premium, our focus is on a class of solutions that only store the value, which is highly space-efficient. While these solutions have proven their worth in dis... 详细信息
来源: 评论
科学研究的第五范式——以智能驱动的材料设计为例
收藏 引用
Engineering 2023年 第5期24卷 126-137,I0003,I0004页
作者: Can Leng Zhuo Tang Yi-Ge Zhou Zean Tian Wei-Qing Huang Jie Liu Keqin Li Kenli Li Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense TechnologyChangsha 410073China Laboratory of Software Engineering for Complex Systems National University of Defense TechnologyChangsha 410073China National Supercomputing Center in Changsha Changsha 410082China College of Computer Science and Electronic Engineering Hunan UniversityChangsha 410082China Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha 410082China Department of Applied Physics School of Physics and ElectronicsHunan UniversityChangsha 410082China Department of Computer Science State University of New YorkNew PaltzNY 12561USA
科学正在进入一个新时代——第五范式——它被认为是知识整合到不同领域的主要特征,是基于无所不在的机器学习系统的计算社区中智能驱动的工作。在此,我们通过在天河一号超级计算机系统上构建的催化材料专门设计的典型平台案例,生动地... 详细信息
来源: 评论
Simulation of Nuclear Reactor Accident Scenarios using Physics-Informed Neural Networks and Transfer-Learning  4
Simulation of Nuclear Reactor Accident Scenarios using Physi...
收藏 引用
4th International Conference on Electronic Information Engineering and computer science, EIECS 2024
作者: Yu, Yang Xie, Yufei Wang, Wenlin Wu, Guohua Lan, Haitao Lin, Enbo An, Ping Sun, Zibin Zhang, Haichuan Wu, Yixian National University of Defense Technology National Key Laboratory of Parallel and Distributed Computing Changsha China Nuclear Power Institute of China Science and Technology on Reactor System Design Technology Laboratory Chengdu China School of Automation Wuhan University of Technology Wuhan China Sino-German College of Intelligent Manufacturing Shenzhen Technology University Shenzhen China Institute of Automotive Engineers Hubei University of Automotive Technology Shiyan China Nuclear Power Institute of China Chengdu China
In a Loss of Coolant Accident (LOCA), reactor core temperatures can rise rapidly, leading to potential fuel damage and radioactive material release. This research presents a groundbreaking method that combines the pow... 详细信息
来源: 评论
MBAPIS: Multi-Level Behavior Analysis Guided Program Interval Selection for Microarchitecture Studies  23
MBAPIS: Multi-Level Behavior Analysis Guided Program Interva...
收藏 引用
Proceedings of the 32nd International Conference on parallel Architectures and Compilation Techniques
作者: Hongwei Cui Yujie Cui Honglan Zhan Shuhao Liang Xianhua Liu Chun Yang Xu Cheng Engineering Reserach Center of Microprocessor & System Ministry of Education School of Computer Science Peking University Beijing National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University Beijing
Understanding program behavior is crucial in computer architecture research, but the growing size of benchmarks makes analyzing and simulating entire programs increasingly challenging. In practice, researchers often s... 详细信息
来源: 评论
Optimizing Batched Small Matrix Multiplication on Multi-core DSP Architecture
Optimizing Batched Small Matrix Multiplication on Multi-core...
收藏 引用
International Symposium on parallel and distributed processing with Applications, ISPA
作者: Xiaohan Zuo Chunhua Xiao Qinglin Wang Chen Shi College of Computer Science Chongqing University China Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education China National Key Laboratory of Parallel and Distributed Computing National University of Defense Technology Changsha China Laboratory of Digitizing Software for Frontier Equipment National University of Defense Technology Changsha China
General Matrix Multiplication (GEMM) is a critical computational operation in scientific computing and machine learning domains. While traditional GEMM performs well on large matrices, it is inefficient in terms of da... 详细信息
来源: 评论
Unlearnable 3D Point Clouds: Class-wise Transformation Is All You Need  38
Unlearnable 3D Point Clouds: Class-wise Transformation Is Al...
收藏 引用
38th Conference on Neural Information processing Systems, NeurIPS 2024
作者: Wang, Xianlong Li, Minghui Liu, Wei Zhang, Hangtao Hu, Shengshan Zhang, Yechao Zhou, Ziqi Jin, Hai National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab China Cluster and Grid Computing Lab China Hubei Engineering Research Center on Big Data Security China Hubei Key Laboratory of Distributed System Security China School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Software Engineering Huazhong University of Science and Technology China School of Computer Science and Technology Huazhong University of Science and Technology China
Traditional unlearnable strategies have been proposed to prevent unauthorized users from training on the 2D image data. With more 3D point cloud data containing sensitivity information, unauthorized usage of this new ...
来源: 评论
A Class of Fast and Accurate Multi-layer Block Summation and Dot Product Algorithms  18th
A Class of Fast and Accurate Multi-layer Block Summation a...
收藏 引用
18th IFIP WG 10.3 International Conference on Network and parallel Computing, NPC 2021
作者: He, Kang Barrio, Roberto Chen, Lin Jiang, Hao Liu, Jie Gu, Tongxiang Qi, Jin Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha410073 China Department of Applied Mathematics University of Zaragoza ZaragozaE50009 Spain College of Computer National University of Defense Technology Changsha410073 China Institute of Applied Physics and Computational Mathematics Beijing100000 China
Basic recursive summation and common dot product algorithm have a backward error bound that grows linearly with the vector dimension. Blanchard [1] proposed a class of fast and accurate summation and dot product algor... 详细信息
来源: 评论
Accelerate Graph Neural Network Training by Reusing Batch Data on GPUs
Accelerate Graph Neural Network Training by Reusing Batch Da...
收藏 引用
IEEE International Conference on Performance, Computing and Communications (IPCCC)
作者: Zhejiang Ran Zhiquan Lai Lizhi Zhang Dongsheng Li National Key Laboratory of Parallel and Distributed Processing School of Computer National University of Defense Technology Changsha China
With the increasing adoption of graph neural networks (GNNs) in the graph-based deep learning community, various graph programming frameworks and models have been developed to improve the productivity of GNNs. The cur... 详细信息
来源: 评论
OpenMedIA: Open-Source Medical Image Analysis Toolbox and Benchmark under Heterogeneous AI Computing Platforms
arXiv
收藏 引用
arXiv 2022年
作者: Zhuang, Jia-Xin Huang, Xiansong Yang, Yang Chen, Jiancong Yu, Yue Gao, Wei Li, Ge Chen, Jie Zhang, Tong Peng Cheng Laboratory Shenzhen China School of Computer Science and Technology Harbin Institute of Technology Shenzhen China School of Electronic and Computer Engineering Peking University China National Laboratory for Parallel and Distributed Processing National University of Defense Technology China
In this paper, we present OpenMedIA, an open-source toolbox library containing a rich set of deep learning methods for medical image analysis under heterogeneous Artificial Intelligence (AI) computing platforms. Vario... 详细信息
来源: 评论
DarkSAM: Fooling Segment Anything Model to Segment Nothing  38
DarkSAM: Fooling Segment Anything Model to Segment Nothing
收藏 引用
38th Conference on Neural Information processing Systems, NeurIPS 2024
作者: Zhou, Ziqi Song, Yufei Li, Minghui Hu, Shengshan Wang, Xianlong Zhang, Leo Yu Yao, Dezhong Jin, Hai National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab China Cluster and Grid Computing Lab China Hubei Engineering Research Center on Big Data Security China Hubei Key Laboratory of Distributed System Security China School of Computer Science and Technology Huazhong University of Science and Technology China School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Software Engineering Huazhong University of Science and Technology China School of Information and Communication Technology Griffith University Australia
Segment Anything Model (SAM) has recently gained much attention for its outstanding generalization to unseen data and tasks. Despite its promising prospect, the vulnerabilities of SAM, especially to universal adversar...
来源: 评论