General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quali...
详细信息
General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quality of service with traffic engineering. Based on the establishment of selecting schemes of optical path and methods of traffic calculation, the wavelength routing algorithm of all-optical network based on traffic engineering is presented by combining with prior route of shortest path and traffic engineering, the algorithm procedures are given, and the actual examples are introduced as well as the analysis on simulation calculation. This research results have certain significance for the achievement of optical switching technique of all-optical network.
The highly topological dynamics characterize the most fundamental property of satellite networks contrary to the terrestrial networks. This manifest feature directs the researches on various aspects of satellite netwo...
详细信息
The highly topological dynamics characterize the most fundamental property of satellite networks contrary to the terrestrial networks. This manifest feature directs the researches on various aspects of satellite networks, including routing and switching architecture selection, routing protocol and reliable transmission control protocol design and enhancement, etc,. The paper quantifies the dynamical activates of layered satellite network topologies. The number and length of network snapshots of one-layered satellite constellations are formulated concisely. The snapshot distributions of typical multi-layered constellations are also evaluated. With this work, it compensates for the simplified topological assumptions in many satellite network related investigations. The thorough understanding of this basic feature not only provides for an accurate quantification of network behavior, but also guides constellation design for future satellite networks
Low Earth orbit (LEO) satellite networks are capable of providing wireless connectivity seamlessly and continuously to any part of the world with guaranteed short round-trip propagation delay. As a key part of next ge...
详细信息
Low Earth orbit (LEO) satellite networks are capable of providing wireless connectivity seamlessly and continuously to any part of the world with guaranteed short round-trip propagation delay. As a key part of next generation network (NGN) infrastructure, next generation satellite networks are expected to support a variety of applications with diverse performance requirements. This paper argues that the constellation tomography for the LEO satellite network is a preliminary step for efficient satellite network monitoring and performance promotion. To measure the constellation, a divide-and-conquer mechanism is developed for each parameter estimation by delay probing. The delay measurement is only carried out between two terminals located at the same geographic positions. Performance evaluation on several popular polar LEO constellations proves the accuracy and efficiency of the developed constellation tomography algorithms in divide-and-conquer manner. The geographic position limitation of the delay probing terminals for valid constellation inference is also analyzed in the paper
作者:
CHITRE, DMSHYY, DJEPHREMIDES, AGUPTA, SCOMSAT Laboratories
22300 Comsat Drive Clarksburg MD 20871–9475 USA. Received his B.Sc. from the University of Bombay
India an M.A. in mathematics from the University of Cambridge
U.K. and a Ph.D. in physics from the University of Maryland. He is currently an Associate Executive Director of the Network Technology Division at COMSAT Laboratories. He has been involved in research and development activities in ISDN
VSAT networks data communications and network systems and architectures. Prior to his current positions Dr. Chitre was a Principal Scientist in the Network Technology Division at COMSAT Laboratories. Dr. Chitre joined COMSAT Laboratories in 1980. He has made major contributions to the analysis and architecture of data communication ISDN and BISDN via satellite. Dr. Chitre directs and participates in the international and national standards activities in ISDN BISDN and data communication as they apply to satellite communication. He was Chairman of the Working Group on Protocols and Network Timing Function of the CCIR/CCITT Joint Ad Hoc Group on ISDN/Satellite Matters during 1990–1992. Currently he is the Chairman of the Working Group on New Technologies in the ITU Intersector Coordinating Group (ICG) on Satellite Matters. Dr. Chitre was a programme manager during 1990 and 1991 on a contract from INTELSAT on systems studies on satellite communications systems architectures for ISDN and broadband ISDN systems. Currently he is the technical manager of the DoD Contract on ATM via satellite demonstration and the programme manager for the INTELSAT contract on analysis and top-level specification of INTELSAT ISDN subnetworks and SDH compatible transport network. Received the B.S. degree in electrical engineering from national Chiao-Tung University
Hsin-Chu Taiwan in 1983 and the M.S. and Ph.D. degrees in electrical engineering from Georgia Institute of Technology Atlanta GA in 1986 and 1990 respectively. From June 1987 to October 1987 he worked for the Department of Neurology Emory Univers
The role of satellite communications in networks that provide new services, such as frame relay and multimedia, is investigated. Both passive and active (on-board switching/processing) satellite systems are considered...
详细信息
The role of satellite communications in networks that provide new services, such as frame relay and multimedia, is investigated. Both passive and active (on-board switching/processing) satellite systems are considered. Novel techniques are developed for each system to demonstrate, via detailed analysis and simulation, how the communications bandwidth agility of multipoint/broadcast satellite channels, and the on-board switching/processing, makes it feasible to provide these new services via hybrid satellite and terrestrial networks in a resource-efficient manner.
作者:
TUCK, EFPATTERSON, DPSTUART, JRLAWRENCE, MHCalling Communications Corporation. 1900 West Garvey Ave
South. Suite 200 West Covina CA 91790 USA. Chairman of Calling Communications Corporation. He is also the Managing Director of Kinship Venture Management
Inc. the general partner of Kinship Partners 11 and a General Partner of Boundary the general partner of The Boundary Fund. As a venture capitalist he has founded or participated in founding several telecommunications companies including Calling Communications Corporation Magellan Systems Corporation
manufactures of Global Positioning System receivers Applied Digital Access
manufacturer of DS-3 test access and network performance monitoring equipment Endgate Technology Corporation
specialists in satellite phased array antennas and Poynting Systems Corporation. now a division of Reliance Corporation
manufacturers of fibre optic transport equipment. He was a founder of Kebby Microwave Corporation where he invented the first solid-state. frequency-modulated commercial microwave link system. The company was acquired by ITT Corporation where he rose to the position of V.P. and Technical Director of ITT North America Telecommunications Inc. Subsequently he was V.P. of Marketing and Engineering at American Telecommunications Inc. (ATC). He was founding Director of American Telecom Inc. a joint venture between ATC and Fujitsu and has served on more than 20 boards of directors including those of three public companies. He has authored articles on microwave engineering and telephone signalling and was a contributor to Reference Data For Radio Engineers. He is a graduate of the University of Missouri at Rolla where he was later awarded an honorary Professional degree and serves on its Academy of Electrical Engineering. Mr Tuck is a Senior Member of the IEEE a Fellow of the Institution of Engineers (Australia) a Professional Member of the AIAA and a registered professional engineer in three states. More than 25 years of experience in the telecommunications industry where he has been responsibl
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's la...
详细信息
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's largest unserved market. We describe a system which uses recent advances in active phased arrays, fast-packet switching technology, adaptive routeing, and light spacecraft technology, in part based on the work of the Jet Propulsion laboratory and on recently-declassified work done on the Strategic Defense Initiative, to make it possible to address this market with a global telephone network based on a large low-Earth-orbit constellation of identical satellites. A telephone utility can use such a network to provide the same modern basic and enhanced telephone services offered by telephone utilities in the urban centres of fully-industrialized nations. Economies of scale permit capital and operating costs per subscriber low enough to provide a service to all subscribers, regardless of location, at prices comparable to the same services in urban areas of industrialized nations, while generating operating profits great enough to attract the capital needed for its construction. The bandwidth needed to support the capacity needed to gain these economies of scale requires that the system use K(alpha)-band frequencies. This choice of frequencies places unusual constraints on the network design, and in particular forces the use of a large number of satellites. Global demand for basic and enhanced telephone service is great enough to support at least three networks of the size described herein. The volume of advanced components, and services such as launch services, required to construct and replace these networks is sufficient to propel certain industries to market leadership positions in the early 21st Century.
This paper introduces AEKG4APT, an APT Knowledge Graph (KG) enhanced by Large Language Models (LLMs), as a way to deal with the cybersecurity problems caused by Advanced Persistent Threats (APTs). The core of AEKG4APT...
详细信息
This paper introduces AEKG4APT, an APT Knowledge Graph (KG) enhanced by Large Language Models (LLMs), as a way to deal with the cybersecurity problems caused by Advanced Persistent Threats (APTs). The core of AEKG4APT lies in the combined application of LLMs, Cyber Threat Intelligence (CTI), and KG. The first part of the paper goes into great detail about how the AEKG4APT was constructed, including its ontology schema, data sources, and dataset features. There are also statistics on the AEKG4APT’s nodes, relationships, and key attributes. Secondly, it was shown how to utilize LLMs and public sandboxes for the collection and analysis of CTI Additionally, tests that compare traditional deep learning models to LLM methods show that LLM is both more efficient and more accurate at extracting information. Subsequently, the Decision Making Trial and Evaluation laboratory - Interpretive Structural Modeling (DEMATEL-ISM) analytical method was introduced to identify and analyse the factors and their interrelationships within the AEKG4APT data, thereby revealing the key dependencies and influence paths within the data structure. Experiments were designed to demonstrate its applications in modeling, computing, and obtaining interpretable computational results on AEKG4APT. In addition, this paper also explores the dynamic expansion capabilities of AEKG4APT, including data expansion, schema expansion, and permanent maintenance strategies, to address the evolving APT threats. Finally, this paper summarizes the competitiveness and application value of AEKG4APT by comparing it with other CTI KGs and platforms in academia and industry, demonstrating its extensive application potential in the field of cybersecurity.
暂无评论