咨询与建议

限定检索结果

文献类型

  • 227 篇 会议
  • 167 篇 期刊文献

馆藏范围

  • 394 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 210 篇 理学
    • 77 篇 物理学
    • 67 篇 大气科学
    • 65 篇 数学
    • 26 篇 统计学(可授理学、...
    • 20 篇 化学
    • 15 篇 海洋科学
    • 15 篇 地球物理学
    • 9 篇 生物学
    • 6 篇 系统科学
  • 206 篇 工学
    • 75 篇 电子科学与技术(可...
    • 75 篇 信息与通信工程
    • 49 篇 计算机科学与技术...
    • 39 篇 电气工程
    • 39 篇 软件工程
    • 25 篇 控制科学与工程
    • 23 篇 材料科学与工程(可...
    • 23 篇 航空宇航科学与技...
    • 22 篇 化学工程与技术
    • 18 篇 机械工程
    • 16 篇 仪器科学与技术
    • 14 篇 光学工程
    • 14 篇 动力工程及工程热...
    • 11 篇 土木工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 冶金工程
    • 9 篇 核科学与技术
    • 8 篇 建筑学
    • 8 篇 生物工程
    • 6 篇 测绘科学与技术
  • 17 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 7 篇 农学
  • 4 篇 军事学
  • 3 篇 经济学
  • 2 篇 医学

主题

  • 14 篇 frequency select...
  • 11 篇 electromagnetic ...
  • 9 篇 simulation
  • 9 篇 optimization
  • 7 篇 reflection
  • 7 篇 computational el...
  • 7 篇 convolution
  • 6 篇 gravitational wa...
  • 6 篇 radar cross-sect...
  • 6 篇 computational mo...
  • 6 篇 radar cross sect...
  • 5 篇 stability analys...
  • 5 篇 electromagnetics
  • 5 篇 horn antennas
  • 5 篇 analytical model...
  • 5 篇 training
  • 4 篇 jamming
  • 4 篇 metals
  • 4 篇 space vehicles
  • 4 篇 deep learning

机构

  • 77 篇 national key lab...
  • 54 篇 state key labora...
  • 27 篇 national key lab...
  • 25 篇 university of ch...
  • 18 篇 laboratory for r...
  • 18 篇 national key lab...
  • 13 篇 national key lab...
  • 12 篇 national key lab...
  • 11 篇 college of infor...
  • 10 篇 beijing institut...
  • 9 篇 national key lab...
  • 8 篇 department of as...
  • 8 篇 national climate...
  • 8 篇 center for monso...
  • 8 篇 school of fundam...
  • 8 篇 beijing institut...
  • 8 篇 national key lab...
  • 8 篇 school of physic...
  • 7 篇 beijing institut...
  • 7 篇 cas key laborato...

作者

  • 52 篇 jiaqi liu
  • 50 篇 liu jiaqi
  • 28 篇 lu gao
  • 23 篇 gao lu
  • 22 篇 xin liu
  • 21 篇 liu xin
  • 18 篇 ai xia
  • 18 篇 zhang shengjun
  • 16 篇 xia ai
  • 15 篇 gang meng
  • 15 篇 shengjun zhang
  • 15 篇 jiang zhiye
  • 14 篇 meng gang
  • 13 篇 zhiye jiang
  • 12 篇 runle du
  • 12 篇 gang huang
  • 10 篇 wu runhui
  • 10 篇 feng xue
  • 10 篇 jianping li
  • 9 篇 zheng pei

语言

  • 373 篇 英文
  • 11 篇 中文
  • 8 篇 其他
检索条件"机构=National Key Laboratory of Science and Technology on Test Physics Numerical Mathematical"
394 条 记 录,以下是211-220 订阅
排序:
Multi-feature radar signal modulation recognition based on improved PSO algorithm
Multi-feature radar signal modulation recognition based on i...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Gao, Jing-Peng Shen, Liang-Xi Ye, Fang Wang, Shang-Yue Zhang, Ran College of Information and Communication Engineering Harbin Engineering University Harbin China National Key Laboratory of Science and Technology on Test Physics and Numerical Mathematics Beijing Institute of Space Long March Vehicle Beijing China
In order to solve the problem that radar emitter signal modulation recognition under low signal-to-noise ratio (SNR) has difficulty in selecting the parameters of the classifier and the problem of low recognition rate... 详细信息
来源: 评论
Photoinduced anisotropic lattice dynamic response and domain formation in thermoelectric SnSe
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Wei Wu, Lijun Li, Junjie Aryal, Niraj Jin, Xilian Liu, Yu Fedurin, Mikhail Babzien, Marcus Kupfer, Rotem Palmer, Mark Petrovic, Cedomir Yin, Weiguo Dean, Mark P.M. Robinson, Ian Tao, Jing Zhu, Yimei Condensed Matter Physics and Materials Science Division Brookhaven National Laboratory UptonNY11973 United States State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Accelerator Science & Technology Initiative Accelerator Test Facility Brookhaven National Laboratory UptonNY11973 United States London Centre for Nanotechnology University College LondonWC1E 6BT United Kingdom
Identifying and understanding the mechanisms behind strong phonon-phonon scattering in condensed matter systems is critical to maximizing the efficiency of thermoelectric devices. To date, the leading method to addres... 详细信息
来源: 评论
Dimension degradation of fractionally spaced super-exponential algorithm for sparse channel equalisation
Dimension degradation of fractionally spaced super-exponenti...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Bai, JinLiang Jiang, ZhiYe Wang, Feng Zhou, Yi Sun, Heng National Key Laboratory of Science and Technology on Test Physics and Numerical Mathematics Beijing China Array and Information Processing Laboratory College of Computer and Information Hohai University West Focheng Road No. 8 Jiangning District Nanjing China
Fractionally spaced super-exponential (FSSE) algorithm has the disadvantage of computational complexity since it exploits high-order statistics explicitly. The authors propose a dimension degradation technique for FSS... 详细信息
来源: 评论
Effect of celestial body gravity on Taiji mission range and range acceleration noise
收藏 引用
Physical Review D 2022年 第10期106卷 102005-102005页
作者: Xiaoqing Han Xiaodong Peng Wenlin Tang Zhen Yang Xiaoshan Ma Chen Gao Li-e Qiang Yuzhu Zhang Mengyuan Zhao Jiafeng Zhang Binbin Liu Key Laboratory of Electronics and Information Technology for Space System National Space Science Center Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China School of Fundamental Physics and Mathematical Sciences Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 China Taiji Laboratory for Gravitational Wave Universe Hangzhou 310024 China Key Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province Hangzhou 310024 China
The Taiji project is a space gravitational-wave detection mission consisting of three satellites that form a giant equilateral triangle with a side length of approximately 3×106 km in the heliocentric orbit. The... 详细信息
来源: 评论
A unified back-projection correction algorithm for squint SAR based on SPECAN processing
A unified back-projection correction algorithm for squint SA...
收藏 引用
Signal, Information and Data Processing (ICSIDP), IEEE International Conference on
作者: Chao Wang Heng Sun Xin-Yu Zhang Ran Zhang National Key Laboratory of Science and Technology on Test Physics and Numerical Mathematics Beijing P.R. China
The missile-borne or airborne synthetic aperture radar (SAR) usually adopts the squint mode and subaperture to satisfy maneuvering and the real-time processing. A realtime imaging algorithm of squint SAR based on SPEC...
来源: 评论
Insect wing-beat frequency automatic extraction and experimental verification with a Ku-band insect radar system
Insect wing-beat frequency automatic extraction and experime...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Zhang, Tianran Liu, XiangRong Hu, Cheng Wang, Rui Liu, Changjiang Li, Wenqing Radar Research Laboratory School of Information and Electronics Beijing Institute of Technology Beijing100081 China National Key Laboratory of Science and Technology on Test Physics and Numerical Mathematics Beijing100076 China Key Laboratory of Electronic and Information Technology in Satellite Navigation Beijing Institute of Technology Ministry of Education Beijing100081 China
The wing-beat frequency is one of the most important behavioural parameters of migratory insects and is widely used to distinguish insect species due to the diversity of wing-beat frequency among different species. Tr... 详细信息
来源: 评论
Learning to Infer Weather States Using Partial Observations
Journal of Geophysical Research: Machine Learning and Comput...
收藏 引用
Journal of Geophysical Research: Machine Learning and Computation 2025年 第1期2卷
作者: Jie Chao Baoxiang Pan Quanliang Chen Shangshang Yang Jingnan Wang Congyi Nai Yue Zheng Xichen Li Huiling Yuan Xi Chen Bo Lu Ziniu Xiao National Key Laboratory of Earth System Numerical Modeling and Application Institute of Atmospheric Physics Chinese Academy of Science Beijing China School of Atmospheric Sciences Chengdu University of Information Technology Chengdu China Key Laboratory of Mesoscale Severe Weather Ministry of Education and School of Atmospheric Sciences Nanjing University Nanjing China College of Computer National University of Defense Technology Hunan China Clustertech LTD Hong Kong China National Climate Center China Meteorological Administration Beijing China
Accurate state estimation of the high-dimensional, chaotic Earth's atmosphere marks a Sisyphean task, yet is indispensable for initiating weather forecasts and gauging climate variability. While much effort is dev...
来源: 评论
Influences of the NAO on the North Atlantic CO2 Fluxes in Winter and Summer on the Interannual Scale
收藏 引用
Advances in Atmospheric sciences 2019年 第11期36卷 1288-1298页
作者: Yujie JING Yangchun LI Yongfu XU Guangzhou FAN State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry Institute of Atmospheric Physics Chinese Academy of Sciences Beijing 100029 China School of Atmospheric Sciences Chengdu University of Information Technology Chengdu 610225 China Laboratory for Regional Oceanography and Numerical Modeling Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China Department of Atmospheric Chemistry and Environmental Sciences College of Earth Science University of Chinese Academy of Sciences Beijing 100049 China
The differences in the influences of the North Atlantic Oscillation (NAO) on the air–sea CO2 fluxes (fCO2) in the North Atlantic (NA) between different seasons and between different regions are rarely fully investiga... 详细信息
来源: 评论
science and Prediction of Heavy Rainfall over China:Research Progress since the Reform and Opening-Up of New China
收藏 引用
Journal of Meteorological Research 2020年 第3期34卷 427-459页
作者: Yali LUO Jisong SUN Ying LI Rudi XIA Yu DU Shuai YANG Yuanchun ZHANG Jing CHEN Kan DAI Xueshun SHEN Haoming CHEN Feifan ZHOU Yimin LIU Shenming FU Mengwen WU Tiangui XIAO Yangruixue CHEN Huiqi LI Mingxin LI State Key Laboratory of Severe Weather Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijing 100081 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science&TechnologyNanjing 210044 School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster StudiesSun Yat-sen UniversityGuangzhou 519082 Key Laboratory of Cloud–Precipitation Physics and Severe Storms Institute of Atmospheric PhysicsChinese Academy of SciencesBeijing 100029 National Meteorological Center China Meteorological AdministrationBeijing 100081 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric PhysicsChinese Academy of SciencesBeijing 100029 Zhejiang Institute of Meteorological Sciences Zhejiang Meteorological BureauHangzhou 310008 School of Atmospheric Sciences Chengdu University of Information TechnologyChengdu 610225 Institute of Heavy Rain China Meteorological AdministrationWuhan 43020510 Institute of Tropical and Marine MeteorologyChina Meteorological Administration Guangzhou 510640 Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai) Zhuhai 519082 University of Chinese Academy of Sciences Beijing 100049 CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences(CAS)Beijing 100101
This paper reviews the major progress on development of the science and prediction of heavy rainfall over China since the beginning of the reform and opening-up of new China(roughly between 1980 and 2019).The progress... 详细信息
来源: 评论
General-purpose machine-learned potential for 16 elemental metals and their alloys
arXiv
收藏 引用
arXiv 2023年
作者: Song, Keke Zhao, Rui Liu, Jiahui Wang, Yanzhou Lindgren, Eric Wang, Yong Chen, Shunda Xu, Ke Liang, Ting Ying, Penghua Xu, Nan Zhao, Zhiqiang Shi, Jiuyang Wang, Junjie Lyu, Shuang Zeng, Zezhu Liang, Shirong Dong, Haikuan Sun, Ligang Chen, Yue Zhang, Zhuhua Guo, Wanlin Qian, Ping Sun, Jian Erhart, Paul Ala-Nissila, Tapio Su, Yanjing Fan, Zheyong Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing100083 China School of Materials Science and Engineering Hunan University Changsha410082 China MSP group QTF Centre of Excellence Department of Applied Physics Aalto University P.O. Box 15600 Aalto EspooFI-00076 Finland Chalmers University of Technology Department of Physics Gothenburg41926 Sweden National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing210093 China Department of Civil and Environmental Engineering George Washington University WashingtonDC20052 United States Department of Electronic Engineering and Materials Science and Technology Research Center The Chinese University of Hong Kong N.T. Shatin999077 Hong Kong Department of Physical Chemistry School of Chemistry Tel Aviv University Tel Aviv6997801 Israel Institute of Zhejiang University-Quzhou Quzhou324000 China College of Chemical and Biological Engineering Zhejiang University Hangzhou310027 China State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education Institute for Frontier Science Nanjing University of Aeronautics and Astronautics Nanjing210016 China Department of Mechanical Engineering The University of Hong Kong Pokfulam Road Hong Kong School of Science Harbin Institute of Technology Shenzhen518055 China College of Physical Science and Technology Bohai University Jinzhou121013 China Interdisciplinary Centre for Mathematical Modelling Department of Mathematical Sciences Loughborough University Leicestershire LoughboroughLE11 3TU United Kingdom
Machine-learned potentials (MLPs) have exhibited remarkable accuracy, yet the lack of general-purpose MLPs for a broad spectrum of elements and their alloys limits their applicability. Here, we present a feasible appr... 详细信息
来源: 评论