咨询与建议

限定检索结果

文献类型

  • 509 篇 会议
  • 191 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 702 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 459 篇 工学
    • 353 篇 计算机科学与技术...
    • 258 篇 软件工程
    • 86 篇 信息与通信工程
    • 58 篇 电子科学与技术(可...
    • 53 篇 控制科学与工程
    • 35 篇 机械工程
    • 35 篇 生物工程
    • 28 篇 电气工程
    • 18 篇 仪器科学与技术
    • 16 篇 动力工程及工程热...
    • 11 篇 土木工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 网络空间安全
    • 8 篇 化学工程与技术
    • 8 篇 农业工程
    • 8 篇 环境科学与工程(可...
    • 7 篇 交通运输工程
    • 6 篇 光学工程
  • 168 篇 理学
    • 101 篇 数学
    • 36 篇 生物学
    • 29 篇 系统科学
    • 25 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 11 篇 化学
  • 120 篇 管理学
    • 81 篇 管理科学与工程(可...
    • 42 篇 图书情报与档案管...
    • 23 篇 工商管理
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 13 篇 法学
    • 11 篇 社会学
  • 9 篇 农学
    • 8 篇 作物学
  • 3 篇 教育学
  • 3 篇 文学
  • 3 篇 医学
  • 3 篇 军事学
  • 1 篇 艺术学

主题

  • 32 篇 computational mo...
  • 22 篇 training
  • 19 篇 benchmark testin...
  • 18 篇 fault tolerance
  • 18 篇 distributed proc...
  • 18 篇 feature extracti...
  • 17 篇 kernel
  • 16 篇 computer archite...
  • 16 篇 semantics
  • 15 篇 deep learning
  • 15 篇 concurrent compu...
  • 15 篇 laboratories
  • 14 篇 servers
  • 14 篇 hardware
  • 13 篇 algorithm design...
  • 13 篇 cloud computing
  • 12 篇 parallel process...
  • 12 篇 graphics process...
  • 12 篇 optimization
  • 12 篇 protocols

机构

  • 112 篇 college of compu...
  • 81 篇 national laborat...
  • 77 篇 science and tech...
  • 47 篇 national laborat...
  • 35 篇 school of comput...
  • 30 篇 national laborat...
  • 22 篇 science and tech...
  • 22 篇 national key lab...
  • 18 篇 national key lab...
  • 18 篇 national laborat...
  • 16 篇 national laborat...
  • 14 篇 national laborat...
  • 13 篇 science and tech...
  • 13 篇 school of comput...
  • 12 篇 national key lab...
  • 11 篇 science and tech...
  • 11 篇 national key lab...
  • 10 篇 national laborat...
  • 10 篇 national key lab...
  • 10 篇 national key lab...

作者

  • 32 篇 dongsheng li
  • 28 篇 yijie wang
  • 28 篇 wang yijie
  • 26 篇 li dongsheng
  • 25 篇 wang huaimin
  • 21 篇 huaimin wang
  • 20 篇 zhigang luo
  • 18 篇 naiyang guan
  • 18 篇 peng yuxing
  • 16 篇 yuxing peng
  • 14 篇 dou yong
  • 14 篇 liu jie
  • 14 篇 ji wang
  • 14 篇 yin gang
  • 13 篇 wang ji
  • 13 篇 ding bo
  • 13 篇 jie liu
  • 12 篇 xiang zhang
  • 12 篇 lai zhiquan
  • 11 篇 zhiquan lai

语言

  • 657 篇 英文
  • 42 篇 中文
  • 3 篇 其他
检索条件"机构=National Laboratory for Parallel and Distributed Processing College of Computer"
702 条 记 录,以下是231-240 订阅
排序:
HPGA: A High-Performance Graph Analytics Framework on the GPU
HPGA: A High-Performance Graph Analytics Framework on the GP...
收藏 引用
International Conference on Information Systems and computer Aided Education (ICISCAE)
作者: Haoduo Yang Huayou Su Mei Wen Chunyuan Zhang Department of Computer National University of Defense Technology Changsha China National Key Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha China
In recent years, the rapidly growing use of graphs has sparked parallel graph analytics frameworks for leveraging the massive hardware resources, specifically graphics processing units (GPUs). However, the issues of t... 详细信息
来源: 评论
Meeting deadlines for approximation processing in MapReduce environments
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2017年 第11期18卷 1754-1772页
作者: Ming-hao HU Chang-jian WANG Yu-xing PENG National Laboratory for Parallel and Distributed Processing School of Computer National University of Defense Technology Changsha 410073 China
To provide timely results for big data analytics, it is crucial to satisfy deadline requirements for MapReduce jobs in today's production environments. Much effort has been devoted to the problem of meeting deadlines... 详细信息
来源: 评论
Efficient parallel implementation of a density peaks clustering algorithm on graphics processing unit
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2017年 第7期18卷 915-927页
作者: Ke-shi GE Hua-you SU Dong-sheng LI Xi-cheng LU National Lab for Parallel and Distributed Processing College of Computer National University of Defense Technology Changsha 410003 China
The density peak (DP) algorithm has been widely used in scientific research due to its novel and effective peak density-based clustering approach. However, the DP algorithm uses each pair of data points several time... 详细信息
来源: 评论
General audio tagging with ensembling convolutional neural networks and statistical features
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Kele Zhu, Boqing Kong, Qiuqiang Mi, Haibo Ding, Bo Wang, Dezhi Wang, Huaimin National Key Laboratory of Parallel and Distributed Processing Changsha China College of Computer National University of Defense Technology Changsha China University of Surrey United Kingdom College of Meteorology and Oceanography National Univ. of Defense Tech Changsha China
Audio tagging aims to infer descriptive labels from audio clips. Audio tagging is challenging due to the limited size of data and noisy labels. In this paper, we describe our solution for the DCASE 2018 Task 2 general... 详细信息
来源: 评论
QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Li, Hongwei Bran Navarro, Fernando Ezhov, Ivan Bayat, Amirhossein Das, Dhritiman Kofler, Florian Shit, Suprosanna Waldmannstetter, Diana Paetzold, Johannes C. Hu, Xiaobin Wiestler, Benedikt Zimmer, Lucas Amiranashvili, Tamaz Prabhakar, Chinmay Berger, Christoph Weidner, Jonas Alonso-Basanta, Michelle Rashid, Arif Baid, Ujjwal Adel, Wesam Alis, Deniz Baheti, Bhakti Bai, Yingbin Bhat, Ishaan Cetindag, Sabri Can Chen, Wenting Cheng, Li Dutande, Prasad Dular, Lara Elattar, Mustafa A. Feng, Ming Gao, Shengbo Huisman, Henkjan Hu, Weifeng Innani, Shubham Ji, Wei Karimi, Davood Kuijf, Hugo J. Kwak, Jin Tae Le, Hoang Long Li, Xiang Lin, Huiyan Liu, Tongliang Ma, Jun Ma, Kai Ma, Ting Oksuz, Ilkay Holland, Robbie Oliveira, Arlindo L. Pal, Jimut Bahan Pei, Xuan Qiao, Maoying Saha, Anindo Selvan, Raghavendra Shen, Linlin Silva, Joao Lourenco Spiclin, Ziga Talbar, Sanjay Wang, Dadong Wang, Wei Wang, Xiong Wang, Yin Xi, Ruiling Xu, Kele Yang, Yanwu Yergin, Mert Yu, Shuang Zeng, Lingxi Zhang, YingLin Zhao, Jiachen Zheng, Yefeng Zukovec, Martin Do, Richard Becker, Anton Simpson, Amber Konukoglu, Ender Jakab, Andras Bakas, Spyridon Joskowicz, Leo Menze, Bjoern Department of Informatics Technical University of Munich Germany Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School United States Department of Quantitative Biomedicine University of Zurich Switzerland University Children’s Hospital Zurich University of Zurich Switzerland Department of Radioncology and Radiation Theraphy Klinikum rechts der Isar Technical University of Munich Germany Department of Information Technology and Electrical Engineering ETH-Zurich Switzerland Department of Radiology Memorial Sloan Kettering Cancer Center New York City United States Department of Biomedical and Molecular Sciences Queen’s University Canada TranslaTUM - Central Institute for Translational Cancer Research Technical University of Munich Germany McGovern Institute Massachusetts Institute of Technology United States Institute for Diagnostic and Interventional Radiology Unveristy Zurich Hospital Switzerland BioMedIA Imperial College London United Kingdom Department of Radiation Oncology University of Pennsylvania PA United States University of Pennsylvania PA United States Department of Radiation Oncology Winship Cancer Institute of Emory University Georgia United States Nile University Cairo Egypt Department of Medical Sciences Acibadem University Istanbul Turkey Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Trustworthy Machine Learning Lab University of Sydney Australia Image Sciences Institute University Medical Center Utrecht Netherlands Computer Engineering Department Istanbul Technical University Istanbul Turkey School of Computer Science Shenzhen University Shenzhen China University of Alberta United States University of Ljubljana Faculty of Electrical Engineering Ljubljana Slovenia Tongji University Shanghai China OPPO Research Institute Shanghai China School of Biological and Medical Engineering Beihang University Beijing China Harvard Medical School Boston
Uncertainty in medical image segmentation tasks, especially inter-rater variability, arising from differences in interpretations and annotations by various experts, presents a significant challenge in achieving consis... 详细信息
来源: 评论
Deep Discriminative Clustering Network
Deep Discriminative Clustering Network
收藏 引用
International Joint Conference on Neural Networks
作者: Xuying Shao Keshi Ge Huayou Su Lei Luo Baoyun Peng Dongsheng Li Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China College of Computer National University of Defense Technology Changsha China
Deep clustering aims to cluster unlabeled data by embedding them into a subspace based on deep model. The key challenge of deep clustering is to learn discriminative representations for input data with high dimensions... 详细信息
来源: 评论
FD-MOBILENET: IMPROVED MOBILENET WITH A FAST DOWNSAMPLING STRATEGY
FD-MOBILENET: IMPROVED MOBILENET WITH A FAST DOWNSAMPLING ST...
收藏 引用
IEEE International Conference on Image processing
作者: Zheng Qin Zhaoning Zhang Xiaotao Chen Changjian Wang Yuxing Peng Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China College of Computer National University of Defense Technology Changsha China
We present Fast-Downsampling MobileNet (FD-MobileNet), an efficient and accurate network for very limited computational budgets (e.g., 10-140 MFLOPs). Our key idea is applying a fast down-sampling strategy to MobileNe... 详细信息
来源: 评论
Determinants of pull-based development in the context of continuous integration
收藏 引用
Science China(Information Sciences) 2016年 第8期59卷 53-66页
作者: Yue YU Gang YIN Tao WANG Cheng YANG Huaimin WANG College of Computer National University of Defense Technology National Laboratory for Parallel and Distributed Processing
The pull-based development model, widely used in distributed software teams on open source communities, can efficiently gather the wisdom from crowds. Instead of sharing access to a central repository,contributors cre... 详细信息
来源: 评论
Exploiting contention and congestion aware switch allocation in network-on-chips  17
Exploiting contention and congestion aware switch allocation...
收藏 引用
50th ACM Turing Conference - China, ACM TUR-C 2017
作者: Li, Cunlu Dongy, Dezun Liao, Xiangke National Laboratory for Parallel and Distributed Processing Collaborative Innovation Center of High Performance Computing College of Computer National University of Defense Technology Changsha Hunan410073 China
Network-on-chip system plays an important role to improve the performance of chip multiprocessor systems. As the complexity of the network increases, congestion problem has become the major performance bottleneck and ... 详细信息
来源: 评论
A systematic review of structured sparse learning
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2017年 第4期18卷 445-463页
作者: Lin-bo QIAO Bo-feng ZHANG Jin-shu SU Xi-cheng LU College of Computer National University of Defense Technology Changsha 410073 China National Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha 410073 China
High-dimensional data arising from diverse scientific research fields and industrial development have led to increased interest in sparse learning due to model parsimony and computational advantage. With the assumptio... 详细信息
来源: 评论