咨询与建议

限定检索结果

文献类型

  • 632 篇 会议
  • 618 篇 期刊文献

馆藏范围

  • 1,250 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,204 篇 工学
    • 992 篇 计算机科学与技术...
    • 461 篇 电气工程
    • 226 篇 软件工程
    • 203 篇 信息与通信工程
    • 61 篇 控制科学与工程
    • 34 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 15 篇 材料科学与工程(可...
    • 13 篇 生物工程
    • 12 篇 力学(可授工学、理...
    • 12 篇 动力工程及工程热...
    • 12 篇 交通运输工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 机械工程
    • 10 篇 测绘科学与技术
    • 9 篇 核科学与技术
    • 8 篇 土木工程
    • 6 篇 化学工程与技术
    • 5 篇 船舶与海洋工程
  • 144 篇 理学
    • 57 篇 物理学
    • 39 篇 生物学
    • 33 篇 数学
    • 14 篇 化学
    • 9 篇 地球物理学
    • 9 篇 系统科学
  • 67 篇 医学
    • 43 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 5 篇 特种医学
  • 43 篇 管理学
    • 34 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 6 篇 教育学
  • 6 篇 农学
  • 4 篇 文学

主题

  • 55 篇 deep learning
  • 41 篇 cloud computing
  • 28 篇 task analysis
  • 24 篇 training
  • 22 篇 blockchain
  • 20 篇 anomaly detectio...
  • 20 篇 feature extracti...
  • 19 篇 machine learning
  • 17 篇 computational mo...
  • 16 篇 optimization
  • 13 篇 internet of thin...
  • 12 篇 outlier detectio...
  • 12 篇 neural networks
  • 12 篇 security
  • 11 篇 big data
  • 10 篇 graph neural net...
  • 10 篇 predictive model...
  • 10 篇 image classifica...
  • 10 篇 computer vision
  • 10 篇 robustness

机构

  • 199 篇 natl univ def te...
  • 108 篇 natl univ def te...
  • 98 篇 natl univ def te...
  • 75 篇 natl univ def te...
  • 46 篇 natl univ def te...
  • 45 篇 natl univ def te...
  • 38 篇 natl univ def te...
  • 38 篇 natl univ def te...
  • 37 篇 natl univ def te...
  • 34 篇 natl univ def te...
  • 27 篇 natl univ def te...
  • 26 篇 shanghai jiao to...
  • 26 篇 beijing univ pos...
  • 24 篇 minist educ key ...
  • 24 篇 beijing univ pos...
  • 22 篇 natl key lab par...
  • 22 篇 beijing univ pos...
  • 20 篇 natl univ def te...
  • 20 篇 natl univ def te...
  • 19 篇 huazhong univ sc...

作者

  • 85 篇 wang yijie
  • 79 篇 li dongsheng
  • 71 篇 dou yong
  • 68 篇 luo zhigang
  • 63 篇 wang huaimin
  • 55 篇 zhang xiang
  • 49 篇 liu jie
  • 45 篇 chen haibo
  • 42 篇 lan long
  • 39 篇 su jinshu
  • 39 篇 wang xiaodong
  • 38 篇 peng yuxing
  • 35 篇 jin hai
  • 31 篇 ma xingkong
  • 31 篇 xu kele
  • 30 篇 huang zhen
  • 26 篇 lu kai
  • 25 篇 sun songlin
  • 23 篇 wen mei
  • 23 篇 shi peichang

语言

  • 1,231 篇 英文
  • 15 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Natl Key Lab Parallel & Distributed Comp"
1250 条 记 录,以下是1-10 订阅
排序:
Memory-efficient tensor parallelism for long-sequence Transformer training
收藏 引用
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING 2025年 1-18页
作者: Liang, Peng Qiao, Linbo Shi, Yanqi Zheng, Hao Tang, Yu Li, Dongsheng Natl Univ Def Technol Coll Comp Sci & Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
Transformer-based models like large language models (LLMs) have attracted significant attention in recent years due to their superior performance. A long sequence of input tokens is essential for industrial LLMs to pr... 详细信息
来源: 评论
Leaders and Collaborators: Addressing Sparse Reward Challenges in Multi-Agent Reinforcement Learning
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN compUTATIONAL INTELLIGENCE 2025年 第2期9卷 1976-1989页
作者: Sun, Shaoqi Liu, Hui Xu, Kele Ding, Bo Natl Univ Def Technol Natl Key Lab Parallel & Distributed Proc Changsha 410003 Peoples R China
Cooperative multi-agent reinforcement learning (MARL) has emerged as an effective tool for addressing complex control tasks. However, sparse team rewards present significant challenges for MARL, leading to low explora... 详细信息
来源: 评论
Efficient deep neural network training via decreasing precision with layer capacity
收藏 引用
FRONTIERS OF compUTER SCIENCE 2025年 第10期19卷 1-17页
作者: Shen, Ao Lai, Zhiquan Sun, Tao Li, Shengwei Ge, Keshi Liu, Weijie Li, Dongsheng Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China
Low-precision training has emerged as a practical approach, saving the cost of time, memory, and energy during deep neural networks (DNNs) training. Typically, the use of lower precision introduces quantization errors... 详细信息
来源: 评论
ER-SFM: Efficient and Robust Cluster-Based Structure from Motion  7th
ER-SFM: Efficient and Robust Cluster-Based Structure from Mo...
收藏 引用
7th Chinese Conference on Pattern Recognition and computer Vision
作者: Ye, Zongxin Li, Wenyu Liu, Sidun Qiao, Peng Dou, Yong Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Comp Changsha Peoples R China
Structure from Motion (SfM) is a fundamental computer vision technique that recovers scene structure and camera motion from multi-view images. When facing large-scale scenarios, cluster-based methods are commonly empl... 详细信息
来源: 评论
End-To-End High-Quality Transformer Object Detection Model Applied to Human Head Detection  7th
End-To-End High-Quality Transformer Object Detection Model A...
收藏 引用
7th Chinese Conference on Pattern Recognition and computer Vision
作者: Zhou, Zhen Li, Rongchun Qiao, Peng Jiang, Jingfei Natl Univ Def Technol Sch Comp Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
Head detection is a challenging and widely applied object detection task. Although previous CNN-based head detectors have made good progress, the inherent locality of CNN restricts the extraction of global contextual ... 详细信息
来源: 评论
3DMeshNet: A three-dimensional differential neural network for structured mesh generation
收藏 引用
GRAPHICAL MODELS 2025年 139卷
作者: Peng, Jiaming Chen, Xinhai Liu, Jie Natl Univ Def Technol Lab Digitizing Software Frontier Equipment Changsha 410073 Peoples R China Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
Mesh generation is a crucial step in numerical simulations, significantly impacting simulation accuracy and efficiency. However, generating meshes remains time-consuming and requires expensive computational resources.... 详细信息
来源: 评论
Few-Shot Object Detection for Remote Sensing Images via Pseudo-Sample Generation and Feature Enhancement
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第8期15卷 4477-4477页
作者: Huang, Zhaoguo Chen, Danyang Zhong, Cheng Guangxi Univ Sch Comp Elect & Informat Nanning 530004 Peoples R China Key Lab Parallel Distributed & lntelligent Comp Gu Nanning 530004 Peoples R China
Few-shot object detection (FSOD) based on fine-tuning is essential for analyzing optical remote sensing images. However, existing methods mainly focus on natural images and overlook the scale variations in remote sens... 详细信息
来源: 评论
Large Pretrained Foundation Model for key Performance Indicator Multivariate Time Series Anomaly Detection
IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY
收藏 引用
IEEE OPEN JOURNAL OF THE compUTER SOCIETY 2025年 第1期6卷 176-187页
作者: Wang, Xu Xu, Qisheng Xu, Kele Yu, Ting Ding, Bo Feng, Dawei Dou, Yong Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410073 Peoples R China Natl Univ Def Technol Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China
In the realm of key Performance Indicator (KPI) anomaly detection, deep learning has emerged as a pivotal technology. Yet, the development of effective deep learning models is hindered by several challenges: scarce an... 详细信息
来源: 评论
A physics-informed generative adversarial network for advancing solutions in ocean acoustics
收藏 引用
PHYSICS OF FLUIDS 2025年 第3期37卷
作者: Xia, Rui Guo, Xiao-Wei Zhang, Huajian Li, Genglin Xiao, Jing Xiao, Qisong Song, Min Li, Chao Liu, Jie Natl Univ Def Technol Lab Digitizing Software Frontier Equipment Changsha 410073 Peoples R China Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410073 Peoples R China Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
Advancements in artificial intelligence, notably the groundbreaking efforts in deep learning exemplified by physics-informed neural networks, have opened up innovative pathways for addressing intricate ocean acoustic ... 详细信息
来源: 评论
A heterogeneous parallel algorithm for the Cartesian discrete ordinates for multizone heterogeneous system
收藏 引用
JOURNAL OF SUPERcompUTING 2025年 第4期81卷 1-33页
作者: Li, Runhua Wang, Qinglin Liu, Jie Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410073 Hunan Peoples R China Natl Univ Def Technol Lab Digitizing Software Frontier Equipment Changsha 410073 Hunan Peoples R China Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Hunan Peoples R China
Advancements in computing technology have revolutionized the efficiency and cost-effectiveness of realistic reactor core simulations. The discrete ordinates (SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepa... 详细信息
来源: 评论