咨询与建议

限定检索结果

文献类型

  • 624 篇 会议
  • 572 篇 期刊文献

馆藏范围

  • 1,196 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,157 篇 工学
    • 925 篇 计算机科学与技术...
    • 429 篇 电气工程
    • 203 篇 软件工程
    • 179 篇 信息与通信工程
    • 45 篇 控制科学与工程
    • 34 篇 电子科学与技术(可...
    • 25 篇 材料科学与工程(可...
    • 21 篇 力学(可授工学、理...
    • 19 篇 动力工程及工程热...
    • 17 篇 核科学与技术
    • 15 篇 机械工程
    • 10 篇 仪器科学与技术
    • 10 篇 测绘科学与技术
    • 10 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 石油与天然气工程
    • 5 篇 化学工程与技术
    • 5 篇 船舶与海洋工程
  • 153 篇 理学
    • 72 篇 物理学
    • 29 篇 数学
    • 25 篇 生物学
    • 18 篇 化学
    • 15 篇 地球物理学
    • 7 篇 系统科学
  • 51 篇 医学
    • 37 篇 临床医学
    • 13 篇 基础医学(可授医学...
  • 35 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 5 篇 教育学
    • 4 篇 教育学
  • 3 篇 经济学
  • 3 篇 文学
  • 3 篇 农学
  • 1 篇 艺术学

主题

  • 39 篇 deep learning
  • 36 篇 cloud computing
  • 24 篇 training
  • 23 篇 task analysis
  • 23 篇 gpu
  • 18 篇 fpga
  • 17 篇 blockchain
  • 16 篇 machine learning
  • 14 篇 computational mo...
  • 14 篇 feature extracti...
  • 12 篇 throughput
  • 12 篇 anomaly detectio...
  • 12 篇 parallel computi...
  • 11 篇 outlier detectio...
  • 11 篇 scalability
  • 11 篇 image classifica...
  • 11 篇 scheduling
  • 9 篇 reinforcement le...
  • 9 篇 neural networks
  • 9 篇 optimization

机构

  • 259 篇 natl univ def te...
  • 178 篇 natl univ def te...
  • 177 篇 natl univ def te...
  • 75 篇 natl univ def te...
  • 57 篇 natl lab paralle...
  • 45 篇 natl univ def te...
  • 44 篇 natl univ def te...
  • 38 篇 natl univ def te...
  • 34 篇 natl univ def te...
  • 33 篇 natl univ def te...
  • 33 篇 natl univ def te...
  • 28 篇 natl univ def te...
  • 28 篇 natl univ def te...
  • 22 篇 natl key lab par...
  • 20 篇 natl univ def te...
  • 18 篇 natl univ def te...
  • 17 篇 natl univ def te...
  • 16 篇 natl univ def te...
  • 16 篇 hunan univ coll ...
  • 15 篇 natl univ def te...

作者

  • 126 篇 dou yong
  • 95 篇 liu jie
  • 88 篇 li dongsheng
  • 76 篇 wang yijie
  • 71 篇 wang huaimin
  • 64 篇 luo zhigang
  • 56 篇 wang xiaodong
  • 49 篇 zhang xiang
  • 38 篇 zhou xingming
  • 37 篇 lan long
  • 37 篇 wang qinglin
  • 36 篇 xing zuocheng
  • 35 篇 su jinshu
  • 35 篇 wang ji
  • 35 篇 zhang yang
  • 34 篇 lv shaohe
  • 33 篇 peng yuxing
  • 33 篇 xu kele
  • 30 篇 wang tao
  • 29 篇 lu kai

语言

  • 1,171 篇 英文
  • 21 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Natl Key Lab Parallel & Distributed Proc"
1196 条 记 录,以下是1-10 订阅
排序:
Leaders and Collaborators: Addressing Sparse Reward Challenges in Multi-Agent Reinforcement Learning
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2025年 第2期9卷 1976-1989页
作者: Sun, Shaoqi Liu, Hui Xu, Kele Ding, Bo Natl Univ Def Technol Natl Key Lab Parallel & Distributed Proc Changsha 410003 Peoples R China
Cooperative multi-agent reinforcement learning (MARL) has emerged as an effective tool for addressing complex control tasks. However, sparse team rewards present significant challenges for MARL, leading to low explora... 详细信息
来源: 评论
Memory-efficient tensor parallelism for long-sequence Transformer training
收藏 引用
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING 2025年 1-18页
作者: Liang, Peng Qiao, Linbo Shi, Yanqi Zheng, Hao Tang, Yu Li, Dongsheng Natl Univ Def Technol Coll Comp Sci & Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
Transformer-based models like large language models (LLMs) have attracted significant attention in recent years due to their superior performance. A long sequence of input tokens is essential for industrial LLMs to pr... 详细信息
来源: 评论
Large Pretrained Foundation Model for key Performance Indicator Multivariate Time Series Anomaly Detection
IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY
收藏 引用
IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 2025年 第1期6卷 176-187页
作者: Wang, Xu Xu, Qisheng Xu, Kele Yu, Ting Ding, Bo Feng, Dawei Dou, Yong Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410073 Peoples R China Natl Univ Def Technol Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China
In the realm of key Performance Indicator (KPI) anomaly detection, deep learning has emerged as a pivotal technology. Yet, the development of effective deep learning models is hindered by several challenges: scarce an... 详细信息
来源: 评论
Efficient deep neural network training via decreasing precision with layer capacity
收藏 引用
FRONTIERS OF COMPUTER SCIENCE 2025年 第10期19卷 1-17页
作者: Shen, Ao Lai, Zhiquan Sun, Tao Li, Shengwei Ge, Keshi Liu, Weijie Li, Dongsheng Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China
Low-precision training has emerged as a practical approach, saving the cost of time, memory, and energy during deep neural networks (DNNs) training. Typically, the use of lower precision introduces quantization errors... 详细信息
来源: 评论
3DMeshNet: A three-dimensional differential neural network for structured mesh generation
收藏 引用
GRAPHICAL MODELS 2025年 139卷
作者: Peng, Jiaming Chen, Xinhai Liu, Jie Natl Univ Def Technol Lab Digitizing Software Frontier Equipment Changsha 410073 Peoples R China Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
Mesh generation is a crucial step in numerical simulations, significantly impacting simulation accuracy and efficiency. However, generating meshes remains time-consuming and requires expensive computational resources.... 详细信息
来源: 评论
ER-SFM: Efficient and Robust Cluster-Based Structure from Motion  7th
ER-SFM: Efficient and Robust Cluster-Based Structure from Mo...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Ye, Zongxin Li, Wenyu Liu, Sidun Qiao, Peng Dou, Yong Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Comp Changsha Peoples R China
Structure from Motion (SfM) is a fundamental computer vision technique that recovers scene structure and camera motion from multi-view images. When facing large-scale scenarios, cluster-based methods are commonly empl... 详细信息
来源: 评论
An adaptive gradient correction method based on mesh skewness for finite volume fluid dynamics simulations
收藏 引用
PHYSICS OF FLUIDS 2025年 第1期37卷
作者: Song, Min Li, Chao Guo, Xiaowei Liu, Jie Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha 410073 Hunan Peoples R China Natl Univ Def Technol Lab Digitizing Software Frontier Equipment Changsha 410073 Hunan Peoples R China
In unstructured mesh solvers based on the finite volume method, accurate gradient calculation is crucial for determining the accuracy of equations. However, most mainstream computational fluid dynamics (CFD) software ... 详细信息
来源: 评论
An Enhanced Linear Extended State Observer-Based Sensorless IPMSM Drives With Robustness Against Current Measurement Offset Error
收藏 引用
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION 2025年 第1期11卷 3558-3567页
作者: Xia, Zhen Yu, Xu Wu, Xuan Dou, Yong Natl Univ Def Technol Sch Comp Natl Lab Parallel & Distributed Proc Changsha 410003 Hunan Peoples R China Hunan Univ Coll Elect & Informat Engn Changsha 410006 Hunan Peoples R China
Back-electromotive force (EMF) estimation has attracted a lot of attention in sensorless interior permanent magnet synchronous motor (IPMSM) control. However, the conventional linear extended state observer (LESO) met... 详细信息
来源: 评论
End-To-End High-Quality Transformer Object Detection Model Applied to Human Head Detection  7th
End-To-End High-Quality Transformer Object Detection Model A...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Zhou, Zhen Li, Rongchun Qiao, Peng Jiang, Jingfei Natl Univ Def Technol Sch Comp Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China
Head detection is a challenging and widely applied object detection task. Although previous CNN-based head detectors have made good progress, the inherent locality of CNN restricts the extraction of global contextual ... 详细信息
来源: 评论
HyperPart: A Hypergraph-Based Abstraction for Deduplicated Storage Systems
收藏 引用
IEEE TRANSACTIONS ON CLOUD COMPUTING 2025年 第1期13卷 46-60页
作者: Cheng, Geyao Xia, Junxu Luo, Lailong Mi, Haibo Guo, Deke Ma, Richard T. B. Natl Univ Def Technol Coll Informat & Commun State Key Lab Complex & Crit Software Environm Wuhan 430019 Peoples R China Natl Univ Def Technol Natl Key Lab Informat Syst Engn Changsha 410073 Peoples R China Natl Univ Def Technol Natl Lab Parallel & Distributed Proc Changsha 410073 Peoples R China Natl Univ Singapore Sch Comp Singapore 119077 Singapore
Currently, deduplication techniques are utilized to minimize the space overhead by deleting redundant data blocks across large-scale servers in data centers. However, such a process exacerbates the fragmentation of da... 详细信息
来源: 评论