咨询与建议

限定检索结果

文献类型

  • 625 篇 会议
  • 576 篇 期刊文献

馆藏范围

  • 1,201 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,162 篇 工学
    • 929 篇 计算机科学与技术...
    • 430 篇 电气工程
    • 206 篇 软件工程
    • 179 篇 信息与通信工程
    • 45 篇 控制科学与工程
    • 34 篇 电子科学与技术(可...
    • 25 篇 材料科学与工程(可...
    • 21 篇 力学(可授工学、理...
    • 19 篇 动力工程及工程热...
    • 17 篇 核科学与技术
    • 15 篇 机械工程
    • 10 篇 仪器科学与技术
    • 10 篇 测绘科学与技术
    • 10 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 石油与天然气工程
    • 5 篇 化学工程与技术
    • 5 篇 船舶与海洋工程
  • 154 篇 理学
    • 73 篇 物理学
    • 29 篇 数学
    • 25 篇 生物学
    • 18 篇 化学
    • 15 篇 地球物理学
    • 7 篇 系统科学
  • 51 篇 医学
    • 37 篇 临床医学
    • 13 篇 基础医学(可授医学...
  • 35 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 5 篇 教育学
    • 4 篇 教育学
  • 3 篇 经济学
  • 3 篇 文学
  • 3 篇 农学
  • 1 篇 艺术学

主题

  • 40 篇 deep learning
  • 36 篇 cloud computing
  • 24 篇 training
  • 24 篇 gpu
  • 23 篇 task analysis
  • 18 篇 fpga
  • 17 篇 blockchain
  • 16 篇 machine learning
  • 14 篇 computational mo...
  • 14 篇 feature extracti...
  • 13 篇 anomaly detectio...
  • 12 篇 throughput
  • 12 篇 parallel computi...
  • 11 篇 outlier detectio...
  • 11 篇 scalability
  • 11 篇 image classifica...
  • 11 篇 scheduling
  • 9 篇 reinforcement le...
  • 9 篇 neural networks
  • 9 篇 optimization

机构

  • 259 篇 natl univ def te...
  • 178 篇 natl univ def te...
  • 177 篇 natl univ def te...
  • 75 篇 natl univ def te...
  • 57 篇 natl lab paralle...
  • 45 篇 natl univ def te...
  • 44 篇 natl univ def te...
  • 38 篇 natl univ def te...
  • 34 篇 natl univ def te...
  • 33 篇 natl univ def te...
  • 33 篇 natl univ def te...
  • 28 篇 natl univ def te...
  • 28 篇 natl univ def te...
  • 22 篇 natl key lab par...
  • 20 篇 natl univ def te...
  • 18 篇 natl univ def te...
  • 17 篇 natl univ def te...
  • 17 篇 natl univ def te...
  • 16 篇 hunan univ coll ...
  • 15 篇 natl univ def te...

作者

  • 126 篇 dou yong
  • 95 篇 liu jie
  • 89 篇 li dongsheng
  • 77 篇 wang yijie
  • 72 篇 wang huaimin
  • 64 篇 luo zhigang
  • 56 篇 wang xiaodong
  • 49 篇 zhang xiang
  • 38 篇 zhou xingming
  • 37 篇 lan long
  • 37 篇 wang qinglin
  • 36 篇 xing zuocheng
  • 36 篇 zhang yang
  • 35 篇 su jinshu
  • 35 篇 wang ji
  • 34 篇 lv shaohe
  • 34 篇 xu kele
  • 33 篇 peng yuxing
  • 31 篇 wang tao
  • 29 篇 huang zhen

语言

  • 1,176 篇 英文
  • 21 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Natl Key Lab Parallel & Distributed Proc"
1201 条 记 录,以下是91-100 订阅
排序:
Online knowledge distillation with elastic peer
收藏 引用
INFORMATION SCIENCES 2022年 583卷 1-13页
作者: Tan, Chao Liu, Jie Natl Univ Def Technol Sci & Parallel & Distributed Proc Lab Changsha 410073 Peoples R China Natl Univ Def Technol Lab Software Engn Complex Syst Changsha 410073 Peoples R China
Knowledge distillation is a highly effective method for transferring knowledge from a cum-bersome teacher network to a lightweight student network. However, teacher networks are not always available. An alternative me... 详细信息
来源: 评论
A generative adversarial network based on an efficient transformer for high-fidelity flow field reconstruction
收藏 引用
PHYSICS OF FLUIDS 2024年 第7期36卷 075184-075184页
作者: Shen, Liming Deng, Liang Liu, Xuliang Wang, Yueqing Chen, Xinhai Liu, Jie Natl Univ Def Technol Lab Digitizing Software Frontier Equipment Changsha 410000 Peoples R China Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha 410000 Peoples R China China Aerodynam Res & Dev Ctr State Key Lab Aerodynam Mianyang 621000 Peoples R China China Aerodynam Res & Dev Ctr Computat Aerodynam Inst Mianyang 621000 Peoples R China
The reconstruction of high-fidelity flow fields from low-fidelity data has attracted considerable attention in fluid dynamics but poses many challenges to existing deep learning methods due to the spatiotemporal compl... 详细信息
来源: 评论
Topic and Reference Guided keyphrase Generation from Social Media  1
收藏 引用
15th International Conference on Knowledge Science, Engineering, and Management (KSEM)
作者: Yu, Xiubin Chen, Xingjun Huang, Zhen Dou, Yong Hu, Biao Natl Univ Def Technol Natl Key Lab Parallel & Distributed Proc Changsha Peoples R China Dalian Navy Acad Dalian Peoples R China
Automatic keyphrase generation can help human efficiently understand or process critical information from massive social media posts. Seq2Seq-based generation models that can produce both present and absent keyphrases... 详细信息
来源: 评论
Disentangled Orchestration on Cyber Ranges
收藏 引用
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2024年 第4期21卷 2344-2360页
作者: Fu, Yongquan Han, Weihong Yuan, Dong Natl Univ Def Technol Coll Comp Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China Guangzhou Univ Sch Comp Sci & Cyber Engn Guangzhou 511370 Guangdong Peoples R China Univ Sydney Fac Engn Sydney NSW 2050 Australia
Cyber ranges require networked applications to test cyberspace events effectively. As testing becomes more advanced, it involves multiple real-world applications with flexible execution orders. However, it is increasi... 详细信息
来源: 评论
F3A: Fairness-Aware AI-Workloads Allocation Considering Multidimensional User Demands in JointCloud  15
F3A: Fairness-Aware AI-Workloads Allocation Considering Mult...
收藏 引用
15th IEEE International Conference on Joint Cloud Computing (JCC)
作者: Yang, Jiacheng Yi, Guodong Gao, Fei Shi, Peichang Wang, Huaimin Natl Univ Def Technol Coll Comp Sci Natl Key Lab Parallel & Distributed Proc Changsha 410073 Peoples R China Xiangjiang Lab Changsha 410073 Peoples R China Hunan Univ Technol & Business Sch Adv Interdisciplinary Studies Changsha 410073 Peoples R China
With the rapid growth of large language models, cloud computing has become an indispensable component of the AI industry. Cloud service providers(CSPs) are establishing AI data centers to service AI workloads. In the ... 详细信息
来源: 评论
Research on fast prediction of boiling flow parameters in rod bundle of NPP based on efficient CFD-ROM methods
收藏 引用
PROGRESS IN NUCLEAR ENERGY 2025年 184卷
作者: Mo, Jinhong Dong, Xiaomeng Xu, Yujie Xu, Anqi Yu, Yang Yang, Ming Shenzhen Univ China Inst Nucl Energy & Safety Coll Phys & Optoelect Engn Shenzhen Key Lab Nucl & Radiat Safety Nanhai St 3688 Nanshan Dist Shenzhen 518060 Peoples R China Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha 410073 Peoples R China Nucl Power Inst China Chengdu 610041 Peoples R China
Historically, Computational Fluid Dynamics (CFD) has been widely used to verify the flow dynamics in rod bundle channels. Nevertheless, the iterative calculation and time consumption make it impractical for the applic... 详细信息
来源: 评论
DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for Domain Adaptation  61
DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Train...
收藏 引用
61st Annual Meeting of the the Association-for-Computational-Linguistics (ACL)
作者: Lu, Menglong Huang, Zhen Zhao, Yunxiang Tian, Zhiliang Liu, Yang Li, Dongsheng Natl Univ Def Technol Natl Key Lab Parallel & Distributed Comp Changsha Peoples R China Beijing Inst Biotechnol Beijing Peoples R China
Self-training emerges as an important research line on domain adaptation. By taking the model's prediction as the pseudo labels of the unlabeled data, self-training bootstraps the model with pseudo instances in th... 详细信息
来源: 评论
SAC: An Ultra-Efficient Spin-based Architecture for Compressed DNNs
收藏 引用
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 2024年 第1期21卷 1-26页
作者: Zhao, Yunping Ma, Sheng Liu, Heng Huang, Libo Dai, Yi Inst Microelect & Microprocessors Sch Computy Changsha Peoples R China Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha Peoples R China Natl Univ Def Technol Sch Comp Changsha Peoples R China Natl Univ Def Technol Inst Microelect & Microprocessors Sch Comp Changsha Peoples R China
Deep Neural Networks (DNNs) have achieved great progress in academia and industry. But they have become computational and memory intensive with the increase of network depth. Previous designs seek breakthroughs in sof... 详细信息
来源: 评论
PCSAGAN: a physics-constrained generative network based on self-attention for high-fidelity flow field reconstruction
收藏 引用
JOURNAL OF VISUALIZATION 2024年 第4期27卷 661-676页
作者: Shen, Liming Deng, Liang Wang, Yueqing Zhang, Jian Liu, Jie Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha Peoples R China Natl Univ Def Technol Lab Digitizing Software Frontier Equipment Changsha Peoples R China China Aerodynam Res & Dev Ctr Computat Aerodynam Inst Mianyang Peoples R China China Aerodynam Res & Dev Ctr State Key Lab Aerodynam Mianyang Peoples R China
We propose a physics-constrained generative adversarial network, PCSAGAN, based on the self-attention mechanism for high-fidelity flow field reconstruction, which can generate high-resolution and high-precision volume... 详细信息
来源: 评论
GGN: a model-free, data-driven deep learning framework for reconstructing gene regulatory networks  23
GGN: a model-free, data-driven deep learning framework for r...
收藏 引用
13th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB)
作者: Mao, Guo Pang, Zhengbin Zuo, Ke Liu, Jie Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha Peoples R China Natl Univ Def Technol Lab Software Engn Complex Syst Changsha Peoples R China
Reconstructing gene regulatory networks based on time-series gene expression data is a huge challenge in the field of systems biology. However, the accuracy of traditional methods can be further improved. In practical... 详细信息
来源: 评论