咨询与建议

限定检索结果

文献类型

  • 321 篇 会议
  • 201 篇 期刊文献

馆藏范围

  • 522 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 356 篇 工学
    • 240 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 134 篇 生物医学工程(可授...
    • 87 篇 光学工程
    • 75 篇 信息与通信工程
    • 75 篇 生物工程
    • 40 篇 电子科学与技术(可...
    • 39 篇 电气工程
    • 35 篇 控制科学与工程
    • 32 篇 机械工程
    • 29 篇 仪器科学与技术
    • 22 篇 化学工程与技术
    • 11 篇 动力工程及工程热...
    • 8 篇 交通运输工程
    • 8 篇 网络空间安全
  • 195 篇 理学
    • 102 篇 数学
    • 77 篇 生物学
    • 56 篇 物理学
    • 27 篇 统计学(可授理学、...
    • 22 篇 化学
    • 11 篇 系统科学
  • 90 篇 管理学
    • 49 篇 图书情报与档案管...
    • 46 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 86 篇 医学
    • 77 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
    • 7 篇 医学技术(可授医学...
  • 14 篇 农学
    • 11 篇 作物学
  • 4 篇 法学
  • 4 篇 教育学
  • 3 篇 经济学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 29 篇 image segmentati...
  • 17 篇 magnetic resonan...
  • 16 篇 biomedical imagi...
  • 14 篇 semantic segment...
  • 14 篇 semantics
  • 13 篇 deep learning
  • 12 篇 training
  • 11 篇 computed tomogra...
  • 11 篇 feature extracti...
  • 10 篇 image registrati...
  • 9 篇 three-dimensiona...
  • 9 篇 computational mo...
  • 8 篇 educational inst...
  • 8 篇 convolution
  • 8 篇 predictive model...
  • 7 篇 image enhancemen...
  • 7 篇 self-supervised ...
  • 7 篇 diseases
  • 7 篇 data models
  • 6 篇 ultrasonic imagi...

机构

  • 63 篇 key laboratory o...
  • 56 篇 school of comput...
  • 42 篇 key laboratory o...
  • 39 篇 college of infor...
  • 32 篇 college of medic...
  • 29 篇 shanghai key lab...
  • 27 篇 key laboratory o...
  • 24 篇 key laboratory o...
  • 24 篇 key laboratory o...
  • 23 篇 school of inform...
  • 22 篇 key laboratory o...
  • 16 篇 digital medical ...
  • 16 篇 key laboratory o...
  • 15 篇 sino-dutch biome...
  • 13 篇 college of compu...
  • 13 篇 national frontie...
  • 13 篇 software college...
  • 13 篇 northeastern uni...
  • 12 篇 computer science...
  • 12 篇 key laboratory o...

作者

  • 43 篇 yang jinzhu
  • 37 篇 jinzhu yang
  • 28 篇 dazhe zhao
  • 24 篇 cao peng
  • 21 篇 zhao dazhe
  • 17 篇 tan wenjun
  • 16 篇 peng cao
  • 15 篇 wenjun tan
  • 15 篇 fu chong
  • 14 篇 ge yu
  • 14 篇 lisheng xu
  • 13 篇 li chen
  • 13 篇 zaiane osmar r.
  • 13 篇 wang lihui
  • 12 篇 yu ge
  • 12 篇 wang manning
  • 12 篇 yu yao
  • 11 篇 wang guoren
  • 10 篇 wei li
  • 10 篇 teng yueyang

语言

  • 496 篇 英文
  • 17 篇 其他
  • 9 篇 中文
检索条件"机构=Northeastern University and Key Laboratory of Medical Image Computing"
522 条 记 录,以下是71-80 订阅
排序:
Uncertainty Quantification and Quality Control for Heatmap-based Landmark Detection Models
收藏 引用
IEEE Transactions on medical Imaging 2025年
作者: Feng, Yong Yang, Jinzhu Tang, Lingzhi Sun, Song Wang, Yonghuai Northeastern University Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Shenyang China Northeastern University School of Computer Science and Engineering Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang China The First Hospital of China Medical University Department of Cardiovascular Ultrasound Shenyang China
Uncertainty quantification is a vital aspect of explainable artificial intelligence that fosters clinician trust in medical applications and facilitates timely interventions, leading to safer and more reliable outcome... 详细信息
来源: 评论
Nonlinear optical response of niobium telluride and its application for demonstrating pulsed fiber lasers
收藏 引用
Journal of Materiomics 2024年 第2期10卷 355-365页
作者: Xinxin Shang Yule Zhang Tuo Li Huanian Zhang Xiaofeng Zou S.Wageh Ahmed A.Al-Ghamdi Han Zhang Shuhao Si Dengwang Li Shandong Province Key Laboratory of Medical Physics and Image Processing Technology Shandong Provincial Key Laboratory of Optics and Photonic DeviceSchool of Physics and ElectronicsShandong Normal UniversityJinan250014China Institute of Microscale Optoelectronics College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China Shandong Yunhai Guochuang Cloud Computing Equipment Industry Innovation Co. Ltd.JinanShandongChina School of Physics and Optoelectronic Engineering Shandong University of TechnologyZibo255049China Department of Physics Faculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
Niobium telluride(NbTe_(2)),a kind of few-layer two-dimensional(2D)transition metal dichalcogenides(TMDs)material,has been theoretically predicted with nonlinear absorption properties and excellent optical ***,we expe... 详细信息
来源: 评论
ISGAN: Unsupervised Domain Adaptation With Improved Symmetric GAN for Cross-Modality Multi-Organ Segmentation
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2024年 第6期29卷 3874-3885页
作者: Jiapeng Li Yifan Zhang Lisheng Xu Yudong Yao Lin Qi College of Medicine and Biological Information Engineering Northeastern University Shenyang China Engineering Research Center of Medical Imaging and Intelligent Analysis Ministry of Education Shenyang China Key Laboratory of Medical Image Computing Ministry of Education Northeastern University Shenyang China Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken NJ USA
The differences between cross-modality medical images are significant, so several studies are working on unsupervised domain adaptation (UDA) segmentation, which aims to adapt a segmentation model trained on a labeled... 详细信息
来源: 评论
Self-Supervised Rotation Learning for 3D Segmentation on Nasopharyngeal Carcinoma MRI images
Self-Supervised Rotation Learning for 3D Segmentation on Nas...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Li, Changtai Jiang, Ruohui Yin, Shihua Yang, Jinzhu Ban, Xiaojuan University of Science and Technology Beijing Beijing Advanced Innovation Center for Materials Genome Engineering School of Intelligence Science and Technology Beijing China University of Science and Technology Beijing School of Intelligence Science and Technology Beijing China Second Affiliated Hospital of Guangxi Medical University Nanning China Northeastern University Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Shenyang China
Segmenting the tumors of nasopharyngeal carcinoma (NPC) in Magnetic Resonance Imaging (MRI) images is critical for its diagnosis and treatment. In medical image segmentation, it is vital to exploit the rich informatio... 详细信息
来源: 评论
CAB: Empathetic Dialogue Generation with Cognition, Affection and Behavior
arXiv
收藏 引用
arXiv 2023年
作者: Gao, Pan Han, Donghong Zhou, Rui Zhang, Xuejiao Wang, Zikun School of Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China Swinburne University of Technology Australia
Empathy is an important characteristic to be considered when building a more intelligent and humanized dialogue agent. However, existing methods did not fully comprehend empathy as a complex process involving three as... 详细信息
来源: 评论
An Unsupervised Domain Adaptation Model Based on Multi-Level Joint Alignment for Multi-Modal Cardiac image Segmentation
收藏 引用
Procedia Computer Science 2023年 226卷 106-112页
作者: Jiapeng Li Yimou Lv Lisheng Xu Lin Qi College of Medicine and Biological Information Engineering Northeastern University Shenyang 110169 China Engineering Research Center of Medical Imaging and Intelligent Analysis Ministry of Education Shenyang 110169 China Key Laboratory of Medical Image Computing Ministry of Education Northeastern University Shenyang 110169 China
Unsupervised Domain Adaptation has greatly boosted the performance of multi-modal medical segmentation when there are only source domain labels and no labels in the target domain. Many previous work relies on Convolut... 详细信息
来源: 评论
Incorporating dynamic attention gating mechanism and pre-trained embedding for Chinese clinical named entity recognition
收藏 引用
Procedia Computer Science 2023年 226卷 113-119页
作者: Zhenming Qiu Anyu Pan Lin Qi College of Medicine and Biological Information Engineering Northeastern University Shenyang 110169 China Engineering Research Center of Medical Imaging and Intelligent Analysis Ministry of Education Shenyang 110169 China Key Laboratory of Medical Image Computing Ministry of Education Northeastern University Shenyang 110169 China
Clinical Named Entity Recognition (CNER) serves as a cornerstone in clinical research and healthcare informatics, with its primary goal being the discernment and categorization of clinical terminologies present within... 详细信息
来源: 评论
Rethinking Barely-Supervised Volumetric medical image Segmentation from an Unsupervised Domain Adaptation Perspective
arXiv
收藏 引用
arXiv 2024年
作者: Shen, Zhiqiang Cao, Peng Su, Junming Yang, Jinzhu Zaiane, Osmar R. School of Computer Science and Engineering Northeastern University Shenyang110819 China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University Shenyang110819 China Alberta Machine Intelligence Institute University of Alberta Edmonton Canada
This paper investigates an extremely challenging problem: barely-supervised volumetric medical image segmentation (BSS). A BSS training dataset consists of two parts: 1) a barely-annotated labeled set, where each labe... 详细信息
来源: 评论
MMBDE: A Two-stage Hybrid Feature Selection Method from Microarray Data
MMBDE: A Two-stage Hybrid Feature Selection Method from Micr...
收藏 引用
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
作者: Xie, Weidong Chi, Yuhuan Wang, Linjie Yu, Kun Li, Wei Northeastern University Computer Science and Engineering Shenyang China Northeastern University College of Medicine and Bioinformation Engineering Shenyang China Northeastern University Key Laboratory of Intelligent Computing in Medical Image Shenyang China
The discovery of diagnostically significant genes from microarray data is essential for disease diagnosis and drug research. However, the difficulty of analyzing microarray data comes from its high dimensionality and ... 详细信息
来源: 评论
RKSeg+: make full use of Runge–Kutta methods in medical image segmentation
收藏 引用
Multimedia Systems 2024年 第2期30卷 65-65页
作者: Zhu, Mai Fu, Chong Wang, Xingwei School of Computer Science and Engineering Northeastern University Shenyang110819 China Engineering Research Center of Security Technology of Complex Network System Ministry of Education Shenyang110819 China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University Shenyang110819 China
The dynamical system perspective has been used to build efficient image classification networks and semantic segmentation networks. Furthermore, the Runge–Kutta (RK) methods are powerful tools for building networks f... 详细信息
来源: 评论