咨询与建议

限定检索结果

文献类型

  • 21 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 36 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 13 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 4 篇 电气工程
    • 4 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 电子科学与技术(可...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
  • 14 篇 理学
    • 8 篇 生物学
    • 5 篇 数学
    • 5 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 化学
  • 5 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...

主题

  • 2 篇 deep learning
  • 2 篇 optimization
  • 2 篇 pattern recognit...
  • 2 篇 bayes methods
  • 2 篇 semantics
  • 2 篇 stochastic syste...
  • 2 篇 district heating
  • 2 篇 computer vision
  • 1 篇 falling point tr...
  • 1 篇 image enhancemen...
  • 1 篇 probability dens...
  • 1 篇 knowledge engine...
  • 1 篇 structural prope...
  • 1 篇 segmentation
  • 1 篇 learning systems
  • 1 篇 support vector m...
  • 1 篇 target localizat...
  • 1 篇 approximation al...
  • 1 篇 audio-visual sys...
  • 1 篇 data processing

机构

  • 6 篇 department of st...
  • 4 篇 pattern recognit...
  • 3 篇 institute of ima...
  • 3 篇 school of intell...
  • 3 篇 visual recogniti...
  • 3 篇 state key labora...
  • 3 篇 national univers...
  • 3 篇 department of co...
  • 3 篇 pattern recognit...
  • 2 篇 south china univ...
  • 2 篇 department of qu...
  • 2 篇 institute of the...
  • 2 篇 graduate institu...
  • 2 篇 school of electr...
  • 2 篇 fraunhofer mevis...
  • 2 篇 pattern analysis...
  • 2 篇 ihu strasbourg s...
  • 2 篇 megvii technolog...
  • 2 篇 institute of aut...
  • 2 篇 diagnostic image...

作者

  • 6 篇 ma zhanyu
  • 5 篇 guo jun
  • 4 篇 xie jiyang
  • 4 篇 siles f.
  • 4 篇 xue jing-hao
  • 3 篇 zhanyu ma
  • 3 篇 jiyang xie
  • 3 篇 yang jian
  • 3 篇 jun guo
  • 2 篇 chen gong
  • 2 篇 bakas spyridon
  • 2 篇 jie yang
  • 2 篇 timofte radu
  • 2 篇 jing-hao xue
  • 2 篇 van ginneken bra...
  • 2 篇 ding yaqing
  • 2 篇 kofler florian
  • 2 篇 guoqiang zhang
  • 2 篇 chen wei-ting
  • 2 篇 li hailong

语言

  • 35 篇 英文
  • 1 篇 其他
检索条件"机构=PRIS-LAB: Pattern Recognition and Intelligent Systems Laboratory School of Electrical Engineering"
36 条 记 录,以下是11-20 订阅
排序:
Ds-ui: dual-supervised mixture of gaussian mixture models for uncertainty inference
arXiv
收藏 引用
arXiv 2020年
作者: Xie, Jiyang Ma, Zhanyu Xue, Jing-Hao Zhang, Guoqiang Guo, Jun Pattern Recognition and Intelligent Systems Lab Beijing University of Posts and Telecommunications China Department of Statistical Science University College London United Kingdom School of Electrical and Data Engineering University of Technology Sydney Australia
This paper proposes a dual-supervised uncertainty inference (DS-UI) framework for improving Bayesian estimation-based uncertainty inference (UI) in deep neural network (DNN)-based image recognition. In the DS-UI, we c... 详细信息
来源: 评论
Soft Dropout And Its Variational Bayes Approximation
Soft Dropout And Its Variational Bayes Approximation
收藏 引用
IEEE Workshop on Machine Learning for Signal Processing
作者: Jiyang Xie Zhanyu Ma Guoqiang Zhang Jing-Hao Xue Zheng-Hua Tan Jun Guo Pattern Recognition and Intelligent Systems Lab Beijing University of Posts and Telecommunications China School of Electrical and Data Engineering University of Technology Sydney Australia Department of Statistical Science University College London United Kingdom Department of Electronic Systems Aalborg University Denmark
Soft dropout, a generalization of standard “hard” dropout, is introduced to regularize the parameters in neural networks and prevent overfitting. We replace the “hard” dropout mask following a Bernoulli distributi... 详细信息
来源: 评论
Analysis of Key Factors in Heat Demand Prediction with Neural Networks
收藏 引用
Energy Procedia 2017年 105卷 2965-2970页
作者: Jiyang Xie Hailong Li Zhanyu Ma Qie Sun Fredrik Wallin Zhongwei Si Jun Guo Pattern Recognition and Intelligent Systems Lab. Beijing University of Posts and Telecommunications China School of Business Society and Engineering Mälardalen University Sweden Institute of Thermal Science and Technology Shandong University China Key Laboratory of Universal Wireless Communications Ministry of Education Beijing University of Posts and Telecommunications China
The development of heat metering has promoted the development of statistic models for the prediction of heat demand, due to the large amount of available data, or big data. Weather data have been commonly used as inpu... 详细信息
来源: 评论
An Active Landing Recovery Method for Quadrotor UAV: Localization, Tracking and Buffering Landing
收藏 引用
IFAC-PapersOnLine 2023年 第2期56卷 3366-3372页
作者: Yongkang Xu Zhihua Chen Shoukun Wang Junzheng Wang National Key Lab of Autonomous Intelligent Unmanned Systems Beijing Institute of Technology Beijing CO 100081 P.R.China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition and MOE Key Lab of Nondestructive Testing Technology School of Information Engineering Nanchang Hangkong University Nanchang CO 330063 P.R. China
This paper proposes a principle of fully autonomous ground mobile landing recovery of Unmanned Aerial Vehicles (UAV) for the problems of relatively fixed landing point, passive recovery, poor flexibility, and environm... 详细信息
来源: 评论
Balson: Bayesian least squares optimization with nonnegative L1-norm constraint
arXiv
收藏 引用
arXiv 2018年
作者: Xie, Jiyang Ma, Zhanyu Zhang, Guoqiang Xue, Jing-Hao Chien, Jen-Tzung Lin, Zhiqing Guo, Jun Pattern Recognition and Intelligent Systems Lab Beijing University of Posts and Telecommunications China School of Computing and Communications University of Technology Sydney Australia Department of Statistical Science University College London United Kingdom Department of Electrical and Computer Engineering National Chiao Tung University Taiwan
A Bayesian approach termed BAyesian Least Squares Optimization with Nonnegative L1-norm constraint (BALSON) is proposed. The error distribution of data fitting is described by Gaussian likelihood. The parameter distri... 详细信息
来源: 评论
BALSON: BAYESIAN LEAST SQUARES OPTIMIZATION WITH NONNEGATIVE L1-NORM CONSTRAINT
BALSON: BAYESIAN LEAST SQUARES OPTIMIZATION WITH NONNEGATIVE...
收藏 引用
IEEE Workshop on Machine Learning for Signal Processing
作者: Jiyang Xie Zhanyu Ma Guoqiang Zhang Jing-Hao Xue Jen-Tzung Chien Zhiqing Lin Jun Guo Pattern Recognition and Intelligent Systems Lab. Beijing University of Posts and Telecommunications China School of Computing and Communications University of Technology Sydney Australia Department of Statistical Science University College London United Kingdom Department of Electrical and Computer Engineering National Chiao Tung University Taiwan
A Bayesian approach termed the BAyesian Least Squares Optimization with Nonnegative L 1 -norm constraint (BALSON) is proposed. The error distribution of data fitting is described by Gaussian likelihood. The parameter ... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks
Edge-Aware Graph Attention Network for Ratio of Edge-User Es...
收藏 引用
International Conference on pattern recognition
作者: Jiehui Deng Sheng Wan Xiang Wang Enmei Tu Xiaolin Huang Jie Yang Chen Gong PCA Lab the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Hong Kong Polytechnic University Hong Kong SAR China
Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, wh... 详细信息
来源: 评论
Survey on Deep Face Restoration: From Non-blind to Blind and Beyond
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenjie Wang, Mei Zhang, Kai Li, Juncheng Li, Xiaoming Zhang, Yuhang Gao, Guangwei Deng, Weihong Lin, Chia-Wen The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The Computer Vision Lab ETH Zürich Zürich Switzerland The School of Communication and Information Engineering Shanghai University Shanghai China The Nanyang Technological University Singapore The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical Engineering National Tsing Hua University Hsinchu Taiwan
Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ) face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to signi... 详细信息
来源: 评论
Decorrelation of neutral vector variables: Theory and applications
arXiv
收藏 引用
arXiv 2017年
作者: Ma, Zhanyu Xue, Jing-Hao Leijon, Arne Tan, Zheng-Hua Yang, Zhen Guo, Jun Pattern Recognition and Intelligent System Lab. Beijing University of Posts and Telecommunications Beijing China Department of Statistical Science University College London London United Kingdom School of Electrical Engineering Kth - Royal Institute of Technology Stockholm Sweden Department of Electronic Systems Aalborg University Aalborg Denmark College of Computer Science Beijing University of Technology Beijing China
In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely serial nonlinear transformation and parallel nonlinear transformation, are propo... 详细信息
来源: 评论