咨询与建议

限定检索结果

文献类型

  • 13 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 11 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 6 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 生物工程
    • 2 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
  • 5 篇 理学
    • 3 篇 生物学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 化学
  • 4 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 2 篇 pattern recognit...
  • 2 篇 district heating
  • 1 篇 falling point tr...
  • 1 篇 image enhancemen...
  • 1 篇 complex networks
  • 1 篇 tools
  • 1 篇 structural prope...
  • 1 篇 segmentation
  • 1 篇 noise reduction
  • 1 篇 support vector m...
  • 1 篇 target localizat...
  • 1 篇 data processing
  • 1 篇 deep learning
  • 1 篇 indexes
  • 1 篇 noise measuremen...
  • 1 篇 speech enhanceme...
  • 1 篇 prediction
  • 1 篇 crawlers
  • 1 篇 remote control
  • 1 篇 switches

机构

  • 3 篇 institute of ima...
  • 2 篇 institute of the...
  • 2 篇 institute of aut...
  • 2 篇 pattern recognit...
  • 1 篇 department of au...
  • 1 篇 key laboratory o...
  • 1 篇 school of biomed...
  • 1 篇 tianjin key labo...
  • 1 篇 state key labora...
  • 1 篇 computer vision ...
  • 1 篇 pris-lab: patter...
  • 1 篇 yatiris group pl...
  • 1 篇 laftla: laborato...
  • 1 篇 saudi electronic...
  • 1 篇 the institute of...
  • 1 篇 south china univ...
  • 1 篇 second artillery...
  • 1 篇 research institu...
  • 1 篇 the pattern reco...
  • 1 篇 nanchang hangkon...

作者

  • 3 篇 ma zhanyu
  • 3 篇 siles f.
  • 2 篇 chen gong
  • 2 篇 jie yang
  • 2 篇 li hailong
  • 2 篇 xie jiyang
  • 2 篇 xiaolin huang
  • 2 篇 yang jie
  • 2 篇 sun qie
  • 2 篇 guo jun
  • 2 篇 zhihua chen
  • 1 篇 canales francisc...
  • 1 篇 sigut josé
  • 1 篇 zhanyu ma
  • 1 篇 zhou linqi
  • 1 篇 phutke shruti s.
  • 1 篇 ryu han-cheol
  • 1 篇 shoukun wang
  • 1 篇 seizinger tim
  • 1 篇 huang junshi

语言

  • 22 篇 英文
检索条件"机构=PRIS-Lab: Pattern Recognition and Intelligent Systems Laboratory"
22 条 记 录,以下是11-20 订阅
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
Hybrid Speech Enhancement with Wiener filters and Deep LSTM Denoising Autoencoders
Hybrid Speech Enhancement with Wiener filters and Deep LSTM ...
收藏 引用
International Work Conference on Bio-inspired Intelligence (IWOBI)
作者: Marvin Coto-Jimenez John Goddard-Close Leandro Di Persia Hugo Leonardo Rufiner Pattern Recognition and Intelligent Systems Lab (PRIS-Lab) Universidad de Costa Rica San Jose Costa Rica Departamento de Ingenieria Electrica Universidad Autonoma Metropolitana Mexico City Mexico Sistemas e Inteligencia Computacional sinc(i) Instituto de Investigacion en Senales Santa Fe Argentina FICH-UNL-CONICET & Facultad de Ingenieria UNER Oro Verde Sistemas e Inteligencia Computacional sinc(i) & Laboratorio de Cibernetica Entre Rios Argentina
Over the past several decades, numerous speech enhancement techniques have been proposed to improve the performance of modern communication devices in noisy environments. Among them, there is a large range of classica... 详细信息
来源: 评论
Sea: A combined model for heat demand prediction
arXiv
收藏 引用
arXiv 2018年
作者: Xie, Jiyang Guo, Jiaxin Ma, Zhanyu Xue, Jing-Hao Sun, Qie Li, Hailong Guo, Jun Pattern Recognition and Intelligent Systems Lab Beijing University of Posts and Telecommunications Beijing100876 China Department of Statistical Science University College London London United Kingdom Institute of Thermal Science and Technology Shandong University Jinan250100 China School of Business Society and Engineering Mälardalen University Västerås Sweden Tianjin Key Laboratory of Refrigeration Technology School of Mechanical Engineering Tianjin University of Commerce Tianjin300134 China
Heat demand prediction is a prominent research topic in the area of intelligent energy networks. It has been well recognized that periodicity is one of the important characteristics of heat demand. Seasonal-trend deco... 详细信息
来源: 评论
Analysis of Key Factors in Heat Demand Prediction with Neural Networks
收藏 引用
Energy Procedia 2017年 105卷 2965-2970页
作者: Jiyang Xie Hailong Li Zhanyu Ma Qie Sun Fredrik Wallin Zhongwei Si Jun Guo Pattern Recognition and Intelligent Systems Lab. Beijing University of Posts and Telecommunications China School of Business Society and Engineering Mälardalen University Sweden Institute of Thermal Science and Technology Shandong University China Key Laboratory of Universal Wireless Communications Ministry of Education Beijing University of Posts and Telecommunications China
The development of heat metering has promoted the development of statistic models for the prediction of heat demand, due to the large amount of available data, or big data. Weather data have been commonly used as inpu... 详细信息
来源: 评论
The role of data analysis in the development of intelligent energy networks
arXiv
收藏 引用
arXiv 2017年
作者: Ma, Zhanyu Xie, Jiyang Li, Hailong Si, Zhongwei Zhang, Jianhua Guo, Jun Sun, Qie Pattern Recognition and Intelligent Systems Lab. Beijing University of Posts and Telecommunications Beijing China School of Business Mälardalen University Society and Engineering Västerås Sweden .Tianjin Key Laboratory of Refrigeration Technology School of Mechanical Engineering Tianjin University of Commerce Tianjin China Institute of Thermal Science and Technology Shandong University Ji'nan China Key Laboratory of Universal Wireless Communications Beijing University of Posts and Telecommunications MOE Beijing China State Key Lab of Networking and Switching Technology Beijing University of Posts and Telecommunications Beijing China
Data analysis plays an important role in the development of intelligent energy networks (IENs). This article reviews and discusses the application of data analysis methods for energy big data. The installation of smar... 详细信息
来源: 评论
Deceived bilateral filter for improving the classification of football players from TV broadcast  3
Deceived bilateral filter for improving the classification o...
收藏 引用
3rd IEEE International Work-Conference on Bioinspired Intelligence, IWOBI 2014
作者: Ramírez, Saúl Calderón Canales, Francisco Siles PRIS-LAB: Pattern Recognition and Intelligent Systems Laboratory School of Electrical Engineering Faculty of Engineering Universidad de Costa Rica San José Costa Rica
This paper presents a novel image abstraction tech- nique, the deceived bilateral filter (DBF). The DBF combines border sharpening with simplification of homogeneous regions to achieve moderate de-blurring and colour ... 详细信息
来源: 评论
Detection of dynamic overlays for association football from TV broadcasting
Detection of dynamic overlays for association football from ...
收藏 引用
14th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2013
作者: Siles, Ing. Francisco PRIS-lab: Pattern Recognition and Intelligent Systems Laboratory School of Electrical Engineering Universidad de Costa Rica San José Costa Rica
This paper presents a new dissimilarity measure for the detection of dynamic overlays in football games from TV broadcasting. The detection of the dynamic overlays is used for finding the replays in the input video, t... 详细信息
来源: 评论
Temporal Segmentation of Association Football from TV Broadcasting
Temporal Segmentation of Association Football from TV Broadc...
收藏 引用
IEEE International Conference on intelligent Engineering systems
作者: Francisco Siles PRIS-LAB: Pattern Recognition and Intelligent Systems Laboratory School of Electrical Engineering Faculty of Engineering Universidad de Costa Rica
This paper presents the first module of our system ACE for the automated interpretation of association football games. This module is in charge of the temporal segmentation of the input broadcasting TV video into scen... 详细信息
来源: 评论