咨询与建议

限定检索结果

文献类型

  • 3,936 篇 会议
  • 2,131 篇 期刊文献
  • 43 册 图书

馆藏范围

  • 6,110 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,235 篇 工学
    • 1,320 篇 计算机科学与技术...
    • 1,039 篇 软件工程
    • 961 篇 电气工程
    • 736 篇 控制科学与工程
    • 699 篇 电子科学与技术(可...
    • 653 篇 信息与通信工程
    • 286 篇 动力工程及工程热...
    • 283 篇 机械工程
    • 240 篇 光学工程
    • 216 篇 材料科学与工程(可...
    • 198 篇 仪器科学与技术
    • 191 篇 生物工程
    • 161 篇 化学工程与技术
    • 150 篇 生物医学工程(可授...
    • 96 篇 力学(可授工学、理...
    • 91 篇 交通运输工程
    • 86 篇 航空宇航科学与技...
    • 73 篇 土木工程
  • 1,911 篇 理学
    • 914 篇 数学
    • 726 篇 物理学
    • 360 篇 系统科学
    • 279 篇 统计学(可授理学、...
    • 236 篇 生物学
    • 192 篇 化学
  • 497 篇 管理学
    • 377 篇 管理科学与工程(可...
    • 177 篇 工商管理
    • 123 篇 图书情报与档案管...
  • 147 篇 医学
    • 120 篇 临床医学
    • 86 篇 基础医学(可授医学...
  • 89 篇 法学
    • 81 篇 社会学
  • 66 篇 经济学
  • 33 篇 农学
  • 27 篇 教育学
  • 14 篇 文学
  • 7 篇 军事学
  • 5 篇 艺术学

主题

  • 420 篇 laboratories
  • 217 篇 control systems
  • 122 篇 computational mo...
  • 121 篇 neural networks
  • 100 篇 computer archite...
  • 98 篇 frequency
  • 93 篇 application soft...
  • 88 篇 bandwidth
  • 86 篇 voltage
  • 86 篇 hardware
  • 84 篇 switches
  • 79 篇 throughput
  • 77 篇 optimization
  • 77 篇 costs
  • 76 篇 testing
  • 75 篇 computer science
  • 75 篇 algorithm design...
  • 74 篇 convergence
  • 74 篇 quality of servi...
  • 62 篇 resource managem...

机构

  • 72 篇 department of el...
  • 60 篇 ieee
  • 42 篇 networking and i...
  • 35 篇 department of el...
  • 26 篇 department of el...
  • 22 篇 department of el...
  • 22 篇 beijing key labo...
  • 22 篇 school of electr...
  • 22 篇 photonic systems...
  • 21 篇 department of el...
  • 20 篇 advanced computi...
  • 20 篇 real-time power ...
  • 19 篇 intelligent wave...
  • 18 篇 department of el...
  • 18 篇 networking and i...
  • 17 篇 national mobile ...
  • 17 篇 hubei key labora...
  • 16 篇 school of electr...
  • 16 篇 department of el...
  • 16 篇 department of el...

作者

  • 78 篇 xi zhang
  • 54 篇 ganesh k. venaya...
  • 47 篇 osama a. mohamme...
  • 41 篇 m. zahn
  • 29 篇 mohammed osama a...
  • 28 篇 venayagamoorthy ...
  • 28 篇 park namkyoo
  • 28 篇 j.w. bandler
  • 26 篇 sudip k. mazumde...
  • 25 篇 yu sunkyu
  • 24 篇 junping du
  • 24 篇 mona ghassemi
  • 23 篇 j.h. lang
  • 23 篇 malin premaratne
  • 22 篇 mengchu zhou
  • 22 篇 pedrycz witold
  • 21 篇 zhang xi
  • 20 篇 g.w. roberts
  • 20 篇 tóth roland
  • 19 篇 niyato dusit

语言

  • 5,583 篇 英文
  • 418 篇 其他
  • 109 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 日文
检索条件"机构=Parallel Computer Systems Laboratory Department of Electrical and Computer Engineering"
6110 条 记 录,以下是1881-1890 订阅
排序:
人工智能白内障协同管理的通用平台
收藏 引用
眼科学报 2023年 第10期38卷 665-675页
作者: WU Xiaohang HUANG Yelin LIU Zhenzhen LAI Weiyi LONG Erping ZHANG Kai JIANG Jiewei LIN Duoru CHEN Kexin YU Tongyong WU Dongxuan LI Cong CHEN Yanyi ZOU Minjie CHEN Chuan ZHU Yi GUO Chong ZHANG Xiayin WANG Ruixin YANG Yahan XIANG Yifan CHEN Lijian LIU Congxin XIONG Jianhao GE Zongyuan WANG Dingding XU Guihua DU Shaolin XIAO Chi WU Jianghao ZHU Ke NIE Danyao XU Fan LV Jian CHEN Weirong LIU Yizhi 林浩添 王厚硕(审校) 罗明杰(审校) State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat-sen UniversityGuangzhouChina Beijing Tulip Partners Technology Co. LtdBeijingChina School of Computer Science and Technology Xidian UniversityXi’anChina Zhongshan School of Medicine Sun Yat-sen UniversityGuangzhouChina Department of Molecular and Cellular Pharmacology University of Miami Miller School of MedicineMiamiFloridaUSA Department of Electrical and Computer Systems Engineering Faculty of EngineeringMonash UniversityMelbourneVictoriaAustralia Huizhou Municipal Central Hospital HuizhouChina Tung Wah Hospital Sun Yat-sen UniversityDongguanChina Dongguan Guangming Ophthalmic Hospital DongguanChina Kaifeng Eye Hospital KaifengChina Shenzhen Eye Hospital Shenzhen Key Laboratory of OphthalmologyShenzhen University School of MedicineShenzhenChina Department of Ophthalmology People’s Hospital of Guangxi Zhuang Autonomous RegionNanningChina 《眼科学报》出版团队 西安交通大学第一附属医院 中山大学中山眼科中心 眼病防治全国重点实验室广东省眼科视觉科学重点实验室
目的:建立和验证一个涉及多级临床场景的白内障协作通用的人工智能(artificial intelligence,AI)管理平台,探索基于AI的医疗转诊模式,以提高协作效率和资源覆盖率。方法:训练和验证的数据集来自中国AI医学联盟,涵盖多级医疗机构和采集... 详细信息
来源: 评论
Broadband mid-infrared second harmonic generation using epitaxial polydomain barium titanate thin films
收藏 引用
Photonics Research 2019年 第10期7卷 1193-1199页
作者: JUNCHAO ZHOU WENRUI ZHANG MINGZHAO LIU PAO TAI LIN Department of Electrical and Computer Engineering Texas A&M UniversityCollege StationTexas 77843USA Department of Materials Science and Engineering Texas A&M UniversityCollege StationTexas 77843USA Center for Remote Health Technologies and Systems Texas A&M UniversityCollege StationTexas 77843USA The Center for Functional Nanomaterials Brookhaven National LaboratoryUptonNew York 11973USA
The mid-infrared(mid-IR) second-order optical nonlinearity of the barium titanate(BTO) thin films was characterized by second harmonic generation(SHG). The epitaxial BTO thin films were grown on strontium titanate sub... 详细信息
来源: 评论
A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach
arXiv
收藏 引用
arXiv 2019年
作者: Mokhtari, Aryan Ozdaglar, Asuman Pattathil, Sarath Laboratory for Information and Decision Systems Massachusetts Institute of Technology CambridgeMA United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States
In this paper we consider solving saddle point problems using two variants of Gradient Descent- Ascent algorithms, Extra-gradient (EG) and Optimistic Gradient Descent Ascent (OGDA) methods. We show that both of these ... 详细信息
来源: 评论
Convergence rate of O(1/k) for optimistic gradient and extra-gradient methods in smooth convex-concave saddle point problems
arXiv
收藏 引用
arXiv 2019年
作者: Mokhtari, Aryan Ozdaglar, Asuman Pattathil, Sarath Laboratory for Information and Decision Systems Massachusetts Institute of Technology CambridgeMA United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States
We study the iteration complexity of the optimistic gradient descent-ascent (OGDA) method and the extra-gradient (EG) method for finding a saddle point of a convex-convex uncon- strained min-max problem. To do so, we ... 详细信息
来源: 评论
A holomorphic embedding based continuation method for identifying multiple power flow solutions
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Dan Wang, Bin Laboratory for Information and Decision Systems Massachusetts Institute of Technology CambridgeMA United States Department of Electrical and Computer Engineering Taxes A&M University College StationTX Singapore
—In this paper, we propose an efficient continuation method for locating multiple power flow solutions. We adopt the holomorphic embedding technique to represent solution curves as holomorphic functions in the comple... 详细信息
来源: 评论
Distributed constrained policy learning for power management of networked microgrids
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Qianzhi Dehghanpour, Kaveh Wang, Zhaoyu Qiu, Feng Zhao, Dongbo Department of Electrical and Computer Engineering Iowa State University AmesIA50011 United States Energy Systems Division Argonne National Laboratory LemontIL60439 United States
This paper presents a multi-agent constrained reinforcement learning (RL) policy gradient method for optimal power management of networked microgrids (MGs) in distribution systems. While conventional RL algorithms are... 详细信息
来源: 评论
No switching policy is optimal for a positive linear system with a bottleneck entrance
arXiv
收藏 引用
arXiv 2019年
作者: Sadeghi, Mahdiar Al-Radhawi, M. Ali Margaliot, Michael Sontag, Eduardo D. Departments of Electrical and Computer Engineering and of Bioengineering Northeastern University BostonMA02115 United States Department of Electrical Engineering-Systems Tel Aviv University Tel Aviv-Yafo Israel Laboratory of Systems Pharmacology Harvard Medical School BostonMA02115 United States
We consider a nonlinear SISO system that is a cascade of a scalar "bottleneck entrance" and an arbitrary Hurwitz positive linear system. This system entrains i.e. in response to a T-periodic inflow every sol... 详细信息
来源: 评论
BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2023年 第6期20卷 824-835页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
来源: 评论
Strong Consistency of Variable Selection for Stationary Linear Stochastic systems
Strong Consistency of Variable Selection for Stationary Line...
收藏 引用
第三十八届中国控制会议
作者: ZHAO Wenxiao YIN G.George BAI Er-Wei Key Laboratory of Systems and Control Academy of Mathematics and Systems Science Chinese Academy of Sciences School of Mathematical Sciences University of Chinese Academy of Sciences Department of Mathematics Wayne State University Department of Electrical and Computer Engineering University of Iowa
In this paper, we consider the variable selection for linear stochastic systems. A modified LASSO-type estimator is introduced. Then based on the classical persistent excitation(PE) for systems identification, the str... 详细信息
来源: 评论
An extreme test case for planet formation: a close-in Neptune orbiting an ultracool star
arXiv
收藏 引用
arXiv 2023年
作者: Stefánsson, Guðmundur Mahadevan, Suvrath Miguel, Yamila Robertson, Paul Delamer, Megan Kanodia, Shubham Cañas, Caleb Winn, Joshua Ninan, Joe R., Terrien R., Holcomb E., Ford B., Zawadzki B.P., Bowler C., Bender W., Cochran S., Diddams M., Endl C., Fredrick S., Halverson F., Hearty G.J., Hill A., Lin A., Metcalf A., Monson L., Ramsey A., Roy C., Schwab J., Wright G., Zeimann Princeton University Department of Astrophysical Sciences United States Department of Astronomy & Astrophysics The Pennsylvania State University United States Center for Exoplanets and Habitable Worlds The Pennsylvania State University United States ETH Zurich Institute for Particle Physics & Astrophysics Switzerland Leiden Observatory University of Leiden Netherlands SRON Netherlands Institute for Space Research Netherlands Department of Physics & Astronomy University of California Irvine United States Earth and Planets Laboratory Carnegie Institution for Science United States NASA Goddard Space Flight Center United States Department of Astronomy & Astrophysics Tata Institute of Fundamental Research India Carleton College United States Center for Astrostatistics The Pennsylvania State University United States Institute for Computational & Data Sciences The Pennsylvania State University United States Department of Astronomy The University of Texas at Austin AustinTX78712 United States Steward Observatory The University of Arizona United States Center for Planetary Systems Habitability and McDonald Observatory UT Austin United States Electrical Computer and Energy Engineering University of Colorado United States National Institute of Standards & Technology United States Department of Physics University of Colorado United States Jet Propulsion Laboratory California Institute of Technology United States McDonald Observatory UT Austin United States Space Vehicles Directorate Air Force Research Laboratory United States Space Telescope Science Institute United States Department of Physics and Astronomy Johns Hopkins University United States School of Mathematical and Physical Sciences Macquarie University Australia Penn State Extraterrestrial Intelligence Center The Pennsylvania State University United States Hobby-Eberly Telescope University of Texas Austin AustinTX78712 United States
In current theories of planet formation, close-orbiting planets as massive as Neptune are expected to be very rare around low-mass stars. We report the discovery of a Neptune-mass planet orbiting the 'ultracool... 详细信息
来源: 评论