咨询与建议

限定检索结果

文献类型

  • 159 篇 会议
  • 65 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 226 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 136 篇 工学
    • 108 篇 计算机科学与技术...
    • 72 篇 软件工程
    • 17 篇 信息与通信工程
    • 17 篇 生物工程
    • 16 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 5 篇 光学工程
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 网络空间安全
  • 76 篇 理学
    • 50 篇 数学
    • 18 篇 生物学
    • 12 篇 物理学
    • 11 篇 统计学(可授理学、...
    • 9 篇 化学
    • 4 篇 系统科学
    • 3 篇 地球物理学
  • 38 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 8 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学

主题

  • 15 篇 parallel process...
  • 12 篇 computational mo...
  • 9 篇 data models
  • 8 篇 bandwidth
  • 8 篇 kernel
  • 8 篇 cloud computing
  • 7 篇 computer archite...
  • 7 篇 optimization
  • 6 篇 libraries
  • 6 篇 sparse matrices
  • 6 篇 graphics process...
  • 6 篇 wireless sensor ...
  • 6 篇 coprocessors
  • 6 篇 distributed proc...
  • 6 篇 protocols
  • 6 篇 instruction sets
  • 6 篇 hardware
  • 5 篇 conferences
  • 5 篇 runtime
  • 5 篇 deep neural netw...

机构

  • 12 篇 parallel computi...
  • 11 篇 parallel computi...
  • 7 篇 parallel computi...
  • 6 篇 parallel computi...
  • 4 篇 xiangjiang lab
  • 4 篇 graduate univers...
  • 3 篇 parallel and dis...
  • 3 篇 parallel computi...
  • 3 篇 key lab. of para...
  • 3 篇 parallel computi...
  • 3 篇 key lab. of para...
  • 3 篇 parallel process...
  • 3 篇 lab. of parallel...
  • 2 篇 university of ai...
  • 2 篇 state key labora...
  • 2 篇 department of co...
  • 2 篇 software enginee...
  • 2 篇 university of mi...
  • 2 篇 parallel computi...
  • 2 篇 parallel and rec...

作者

  • 15 篇 dubey pradeep
  • 11 篇 kaul bharat
  • 10 篇 mudigere dheevat...
  • 10 篇 das dipankar
  • 9 篇 satish nadathur
  • 8 篇 jemal abawajy
  • 7 篇 kundu abhisek
  • 7 篇 wang tao
  • 7 篇 sundaram narayan...
  • 7 篇 banerjee kunal
  • 7 篇 wang huaimin
  • 7 篇 mellempudi navee...
  • 7 篇 avancha sasikant...
  • 6 篇 timothy g. matts...
  • 6 篇 zhang yunquan
  • 6 篇 mikhail smelyans...
  • 6 篇 pradeep dubey
  • 5 篇 jeff r. hammond
  • 5 篇 bharat kaul
  • 5 篇 huaimin wang

语言

  • 221 篇 英文
  • 3 篇 其他
  • 2 篇 中文
检索条件"机构=Parallel Computing Lab"
226 条 记 录,以下是191-200 订阅
排序:
A proposal to OpenMP for addressing the CPU oversubscription challenge
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2016年 9903 LNCS卷 187-202页
作者: Yan, Yonghong Hammond, Jeff R. Liao, Chunhua Eichenberger, Alexandre E. Department of Computer Science and Engineering Oakland University Rochester United States Parallel Computing Lab Intel Corp. Santa Clara United States Center for Applied Scientific Computing Lawrence Livermore National Laboratory Livermore United States Thomas J. Watson Research Center IBM Yorktown Heights United States OpenMP Interoperability Language Subcommittee Houston United States
OpenMP has become a successful programming model for developing multi-threaded applications. However, there are still some challenges in terms of OpenMP’s interoperability within itself and with other parallel progra... 详细信息
来源: 评论
Hardware acceleration of sparse and irregular tensor computations of ML models: A survey and insights
arXiv
收藏 引用
arXiv 2020年
作者: Dave, Shail Baghdadi, Riyadh Nowatzki, Tony Avancha, Sasikanth Shrivastava, Aviral Li, Baoxin School of Computing Informatics and Decision Systems Engineering Arizona State University TempeAZ85281 United States Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology CambridgeMA02139 United States School of Computer Science University of California Los AngelesCA90095 United States Parallel Computing Lab at Intel Labs Bangalore India
Machine learning (ML) models are widely used in many important domains. For efficiently processing these computational- and memory-intensive applications, tensors of these over-parameterized models are compressed by l... 详细信息
来源: 评论
A Prompting-based Approach for Adversarial Example Generation and Robustness Enhancement
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Yuting Huang, Pei Cao, Juan Li, Jintao Lin, Yun Dong, Jin Song Ma, Feifei Zhang, Jian Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Beijing China National University of Singapore Singapore Laboratory of Parallel Software and Computational Science ISCAS Beijing China
Recent years have seen the wide application of NLP models in crucial areas such as finance, medical treatment, and news media, raising concerns of the model robustness and vulnerabilities. In this paper, we propose a ... 详细信息
来源: 评论
Resource-Aware Multi-Criteria Vehicle Participation for Federated Learning in Internet of Vehicles
SSRN
收藏 引用
SSRN 2023年
作者: Wen, Jie Zhang, Jingbo Zhang, Zhixia Cui, Zhihua Cai, Xingjuan Chen, Jinjun The Shanxi Key Laboratory of Advanced Control and Equipment intelligence Taiyuan University of Science and Technology Shanxi Taiyuan China The Shanxi Key Laboratory of Big Data Analysis and Parallel Computing Taiyuan University of Science and Technology Shanxi Taiyuan China The State Key Lab for Novel Software Technology Nanjing University China Department of Computing Technologies Swinburne University of Technology Melbourne Australia
Federated learning (FL), as a safe distributed training mode, provides strong support for the edge intelligence of the Internet of Vehicles (IoV) to realize efficient collaborative control and safe data sharing. Howev... 详细信息
来源: 评论
Quantum Neuron: An elementary building block for machine learning on quantum computers
arXiv
收藏 引用
arXiv 2017年
作者: Cao, Yudong Guerreschi, Gian Giacomo Aspuru-Guzik, Alán Department of Chemistry and Chemical Biology Harvard University CambridgeMA02138 United States Parallel Computing Lab Intel Corporation Santa ClaraCA95054 Canadian Institute for Advanced Research TorontoONM5G 1Z8 Canada
Even the most sophisticated artificial neural networks are built by aggregating substantially identical units called neurons. A neuron receives multiple signals, internally combines them, and applies a non-linear func... 详细信息
来源: 评论
parallel Bayesian Network Structure Learning for Genome-Scale Gene Networks
Parallel Bayesian Network Structure Learning for Genome-Scal...
收藏 引用
Supercomputing Conference
作者: Sanchit Misra Md. Vasimuddin Kiran Pamnany Sriram P. Chockalingam Yong Dong Min Xie Maneesha R. Aluru Srinivas Aluru Parallel Computing Lab Intel Corporation Bangalore India Dept. of Computer Science and Engineering Indian Institute of Technology Bombay Mumbai India State Key Laboratory of High Performance Computing National University of Defense Technology Changsha China School of Biology Georgia Institute of Technology Atlanta USA School of Computational Science and Engineering Georgia Institute of Technology Atlanta USA
Learning Bayesian networks is NP-hard. Even with recent progress in heuristic and parallel algorithms, modeling capabilities still fall short of the scale of the problems encountered. In this paper, we present a massi... 详细信息
来源: 评论
Quantifying robustness to adversarial word substitutions
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Yuting Huang, Pei Ma, Fei Fei Cao, Juan Zhang, Meishan Zhang, Jian Li, Jintao Key Lab Of Intelligent Information Processing Institute Of Computing Technology Chinese Academy Of Sciences Beijing100190 China University Of Chinese Academy Of Sciences Beijing100049 China Beijing100190 China Laboratory Of Parallel Software And Computational Science ISCAS Beijing100190 China China
Deep-learning-based NLP models are found to be vulnerable to word substitution perturbations. Before they are widely adopted, the fundamental issues of robustness need to be addressed. Along this line, we propose a fo... 详细信息
来源: 评论
GREYONE: data flow sensitive fuzzing  20
GREYONE: data flow sensitive fuzzing
收藏 引用
Proceedings of the 29th USENIX Conference on Security Symposium
作者: Shuitao Gan Chao Zhang Peng Chen Bodong Zhao Xiaojun Qin Dong Wu Zuoning Chen State Key Laboratory of Mathematical Engineering and Advanced Computing Institute for Network Science and Cyberspace Tsinghua University and Beijing National Research Center for Information Science and Technology ByteDance AI lab Institute for Network Science and Cyberspace Tsinghua University National Research Center of Parallel Computer Engineering and Technology
Data flow analysis (e.g., dynamic taint analysis) has proven to be useful for guiding fuzzers to explore hard-to-reach code and find vulnerabilities. However, traditional taint analysis is labor-intensive, inaccurate ...
来源: 评论
Situation and location awareness in harsh environment
Situation and location awareness in harsh environment
收藏 引用
Proceedings of the International Convention MIPRO
作者: Miklos Kozlovszky Daniela Zavec Pavlinić Andreja Oder Gábor Fehér Pál Bogdanov MTA SZTAKI Laboratory of Parallel and Distributed Computing Budapest Hungary John von Neumann Faculty of Informatics Óbuda University Budapest Hungary Titera Technical Innovative Technologies Ltd. Slovenia Prevent&Deloza Ltd. Celje Slovenia OMT-LAB Budapest University Hungary
Enhanced environment awareness is a key element of life protection in dangerous situations. Thus the Personal Protection Equipment (PPE) clothing industry is forced in the direction to develop highly innovative “inte... 详细信息
来源: 评论
Efficient architecture-aware acceleration of BWA-MEM for multicore systems
arXiv
收藏 引用
arXiv 2019年
作者: Md, Vasimuddin Misra, Sanchit Li, Heng Aluru, Srinivas Parallel Computing Lab Intel Corporation Bangalore India Department of Biostatistics and Computational Biology Dana-Farber Cancer Institute Boston United States Department of Biomedical Informatics Harvard Medical School Boston United States School of Computational Science and Engineering Georgia Institute of Technology Atlanta United States
Innovations in Next-Generation Sequencing are enabling generation of DNA sequence data at ever faster rates and at very low cost. For example, the Illumina NovaSeq 6000 sequencer can generate 6 Terabases of data in le... 详细信息
来源: 评论