咨询与建议

限定检索结果

文献类型

  • 159 篇 会议
  • 66 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 135 篇 工学
    • 107 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 17 篇 生物工程
    • 16 篇 信息与通信工程
    • 15 篇 电子科学与技术(可...
    • 10 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 5 篇 光学工程
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
  • 76 篇 理学
    • 50 篇 数学
    • 18 篇 生物学
    • 12 篇 物理学
    • 11 篇 统计学(可授理学、...
    • 9 篇 化学
    • 4 篇 系统科学
    • 3 篇 地球物理学
    • 2 篇 天文学
  • 38 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 8 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学

主题

  • 15 篇 parallel process...
  • 12 篇 computational mo...
  • 9 篇 data models
  • 8 篇 bandwidth
  • 8 篇 kernel
  • 8 篇 cloud computing
  • 7 篇 computer archite...
  • 7 篇 optimization
  • 6 篇 libraries
  • 6 篇 sparse matrices
  • 6 篇 graphics process...
  • 6 篇 wireless sensor ...
  • 6 篇 coprocessors
  • 6 篇 distributed proc...
  • 6 篇 protocols
  • 6 篇 instruction sets
  • 6 篇 hardware
  • 5 篇 conferences
  • 5 篇 runtime
  • 5 篇 deep neural netw...

机构

  • 12 篇 parallel computi...
  • 11 篇 parallel computi...
  • 7 篇 parallel computi...
  • 6 篇 parallel computi...
  • 4 篇 xiangjiang lab
  • 4 篇 graduate univers...
  • 3 篇 parallel and dis...
  • 3 篇 parallel computi...
  • 3 篇 key lab. of para...
  • 3 篇 parallel computi...
  • 3 篇 key lab. of para...
  • 3 篇 intelligent game...
  • 3 篇 parallel process...
  • 3 篇 lab. of parallel...
  • 2 篇 university of ai...
  • 2 篇 state key labora...
  • 2 篇 department of co...
  • 2 篇 software enginee...
  • 2 篇 university of mi...
  • 2 篇 parallel computi...

作者

  • 15 篇 dubey pradeep
  • 11 篇 kaul bharat
  • 10 篇 mudigere dheevat...
  • 10 篇 das dipankar
  • 9 篇 satish nadathur
  • 8 篇 jemal abawajy
  • 7 篇 kundu abhisek
  • 7 篇 wang tao
  • 7 篇 sundaram narayan...
  • 7 篇 banerjee kunal
  • 7 篇 wang huaimin
  • 7 篇 mellempudi navee...
  • 7 篇 avancha sasikant...
  • 6 篇 timothy g. matts...
  • 6 篇 zhang yunquan
  • 6 篇 mikhail smelyans...
  • 6 篇 pradeep dubey
  • 5 篇 jeff r. hammond
  • 5 篇 bharat kaul
  • 5 篇 huaimin wang

语言

  • 222 篇 英文
  • 3 篇 其他
  • 2 篇 中文
检索条件"机构=Parallel Computing Lab"
227 条 记 录,以下是31-40 订阅
排序:
Ternary Residual Networks
arXiv
收藏 引用
arXiv 2017年
作者: Kundu, Abhisek Banerjee, Kunal Mellempudi, Naveen Mudigere, Dheevatsa Das, Dipankar Kaul, Bharat Dubey, Pradeep Parallel Computing Lab Bangalore India Parallel Computing Lab Santa ClaraCA United States
Sub-8-bit representation of DNNs incur some discernible loss of accuracy despite rigorous (re)training at low-precision. Such loss of accuracy essentially makes them equivalent to a much shallower counterpart, diminis... 详细信息
来源: 评论
Modeling communication in cache-coherent SMP systems - A case study with Xeon Phi
Modeling communication in cache-coherent SMP systems - A cas...
收藏 引用
22nd ACM International Symposium on High-Performance parallel and Distributed computing, HPDC 2013
作者: Ramos, Sabela Hoefler, Torsten Computer Architecture Group University of A Coruña A Coruña Spain Scalable Parallel Computing Lab. ETH Zurich Zurich Switzerland
Most multi-core and some many-core processors implement cache coherency protocols that heavily complicate the design of optimal parallel algorithms. Communication is performed implicitly by cache line transfers betwee... 详细信息
来源: 评论
Ternary neural networks with fine-grained quantization
arXiv
收藏 引用
arXiv 2017年
作者: Mellempudi, Naveen Kundu, Abhisek Mudigere, Dheevatsa Das, Dipankar Kaul, Bharat Dubey, Pradeep Parallel Computing Lab Intel Labs Bangalore Parallel Computing Lab Intel Labs Santa ClaraCA
We propose a novel fine-grained quantization (FGQ) method to ternarize pre-trained full precision models, while also constraining activations to 8 and 4-bits. Using this method, we demonstrate minimal loss in classifi... 详细信息
来源: 评论
Mixed precision training with 8-bit floating point
arXiv
收藏 引用
arXiv 2019年
作者: Mellempudi, Naveen Srinivasan, Sudarshan Das, Dipankar Kaul, Bharat Parallel Computing Lab Intel Labs
Reduced precision computation for deep neural networks is one of the key areas addressing the widening 'compute gap' driven by an exponential growth in model size. In recent years, deep learning training has l... 详细信息
来源: 评论
Running Simulations in HPC and Cloud Resources by Implementing Enhanced TOSCA Workflows
Running Simulations in HPC and Cloud Resources by Implementi...
收藏 引用
International Conference on High Performance computing & Simulation (HPCS)
作者: Javier Carnero Francisco Javier Nieto Advanced Parallel Computing Lab ATOS Seville Spain Advanced Parallel Computing Lab ATOS Bilbao Spain
In general, one of the complexities of large simulations is related to the usage of the heterogeneous computational resources that are needed to execute them. The definition of workflows, usually linked to concrete or... 详细信息
来源: 评论
Large-Scale Energy-Efficient Graph Traversal: A Path to Efficient Data-Intensive Supercomputing  12
Large-Scale Energy-Efficient Graph Traversal: A Path to Effi...
收藏 引用
ACM/IEEE International Conference for High Performance computing, Networking, Storage, and Analysis
作者: Nadathur Satish Changkyu Kim Jatin Chhugani Pradeep Dubey Parallel Computing Lab Intel Corporation
Graph traversal is a widely used algorithm in a variety of fields, including social networks, business analytics, and high-performance computing among others. There has been a push for HPC machines to be rated not jus... 详细信息
来源: 评论
Breaking the Scalability Wall
Breaking the Scalability Wall
收藏 引用
International Conference on High Performance computing
作者: Fabrizio Petrini Parallel Computing Lab Intel Corporation
While HPC systems have considerably improved their raw compute performance and scalability over the last two decades - first with the adoption of compute clusters and then throughput computing - good communication per...
来源: 评论
GrAPL 2022 Keynote Speaker: GraphBLAS Beyond Simple Graphs
GrAPL 2022 Keynote Speaker: GraphBLAS Beyond Simple Graphs
收藏 引用
IEEE International Symposium on parallel and Distributed Processing Workshops and Phd Forum (IPDPSW)
作者: Tim Mattson Parallel Computing Lab Intel Labs
来源: 评论
Memory Access Complexity Analysis of SpMV in RAM (h) Model
Memory Access Complexity Analysis of SpMV in RAM (h) Model
收藏 引用
10th IEEE International Conference on High Performance computing and Communications
作者: Yuan E Zhang Yun-quan Sun Xiangzheng Lab. of Parallel Computing ISCAS 100190 China Graduate University of Chinese Academy of Sciences 100190 China State Key Lab. of Computer Science CAS 100190 China
Sparse Matrix-Vector Multiplication is an important computational kernel in scientific applications, and CSR storage algorithm often performs poorly on modern computer systems. But the register-level blocking algorith... 详细信息
来源: 评论
Bridging the gap between HPC and big data frameworks  43rd
Bridging the gap between HPC and big data frameworks
收藏 引用
43rd International Conference on Very Large Data Bases, VLDB 2017
作者: Anderson, Michael Smith, Shaden Sundaram, Narayanan Capotă, Mihai Zhao, Zheguang Dulloor, Subramanya Satish, Nadathur Willke, Theodore L. Parallel Computing Lab United States University of Minnesota United States Brown University United States Infrastructure Research Lab Intel Corporation United States
Apache Spark is a popular framework for data analytics with attractive features such as fault tolerance and interoperability with the Hadoop ecosystem. Unfortunately, many analytics operations in Spark are an order of... 详细信息
来源: 评论