咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 15 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 12 篇 生物工程
    • 7 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 核科学与技术
    • 1 篇 安全科学与工程
  • 24 篇 理学
    • 14 篇 数学
    • 12 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 3 篇 化学
    • 2 篇 地球物理学
    • 1 篇 系统科学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...

主题

  • 4 篇 deep neural netw...
  • 2 篇 parallel process...
  • 2 篇 reinforcement le...
  • 2 篇 deep learning
  • 2 篇 magnetic resonan...
  • 2 篇 functional align...
  • 2 篇 fmri
  • 2 篇 convolution
  • 2 篇 program processo...
  • 1 篇 covid-19
  • 1 篇 data parallel
  • 1 篇 conferences
  • 1 篇 chemical activat...
  • 1 篇 spatial
  • 1 篇 trees (mathemati...
  • 1 篇 computer archite...
  • 1 篇 sorting
  • 1 篇 data structures ...
  • 1 篇 standard referen...
  • 1 篇 neural networks

机构

  • 11 篇 parallel computi...
  • 7 篇 parallel computi...
  • 2 篇 riken center for...
  • 2 篇 department of co...
  • 2 篇 parallel computi...
  • 2 篇 center for space...
  • 2 篇 department of as...
  • 2 篇 division of sola...
  • 2 篇 chugai pharmaceu...
  • 2 篇 engineering mech...
  • 2 篇 parallel computi...
  • 1 篇 parallel computi...
  • 1 篇 parallel computi...
  • 1 篇 health ethics an...
  • 1 篇 iit kharagpur
  • 1 篇 stony brook univ...
  • 1 篇 department of ph...
  • 1 篇 parallel computi...
  • 1 篇 university of tu...
  • 1 篇 university of co...

作者

  • 10 篇 kaul bharat
  • 9 篇 mudigere dheevat...
  • 9 篇 das dipankar
  • 7 篇 avancha sasikant...
  • 6 篇 kundu abhisek
  • 6 篇 mellempudi navee...
  • 6 篇 dubey pradeep
  • 4 篇 kalamkar dhiraj
  • 3 篇 van halem irmhil...
  • 3 篇 tithi jesmin jah...
  • 3 篇 westerlund magnu...
  • 3 篇 georganas evange...
  • 3 篇 banerjee kunal
  • 3 篇 vooturi dharma t...
  • 3 篇 kararigas georgi...
  • 3 篇 heinecke alexand...
  • 3 篇 zicari roberto v...
  • 2 篇 santara anirban
  • 2 篇 benomar othman
  • 2 篇 aasawat tanuj kr

语言

  • 34 篇 英文
检索条件"机构=Parallel Computing Lab at Intel Labs"
34 条 记 录,以下是1-10 订阅
排序:
MIXED PRECISION TRAINING OF CONVOLUTIONAL NEURAL NETWORKS USING INTEGER OPERATIONS  6
MIXED PRECISION TRAINING OF CONVOLUTIONAL NEURAL NETWORKS US...
收藏 引用
6th International Conference on Learning Representations, ICLR 2018
作者: Das, Dipankar Mellempudi, Naveen Mudigere, Dheevatsa Kalamkar, Dhiraj Avancha, Sasikanth Banerjee, Kunal Sridharan, Srinivas Vaidyanathan, Karthik Kaul, Bharat Georganas, Evangelos Heinecke, Alexander Dubey, Pradeep Corbal, Jesus Shustrov, Nikita Dubtsov, Roma Fomenko, Evarist Pirogov, Vadim Parallel Computing Lab Intel Labs India Parallel Computing Lab Intel Labs SC Product Architecture Group Intel OR United States Software Services Group Intel OR United States
The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand... 详细信息
来源: 评论
Distributed Hessian-free optimization for deep neural network  31
Distributed Hessian-free optimization for deep neural networ...
收藏 引用
31st AAAI Conference on Artificial intelligence, AAAI 2017
作者: He, Xi Mudigere, Dheevatsa Smelyanskiy, Mikhail Takáč, Martin Industrial and Systems Engineering Lehigh University United States Parallel Computing Lab Intel Labs India Parallel Computing Lab Intel Labs SC United States
Training deep neural network is a high dimensional and a highly non-convex optimization problem. In this paper, we revisit Hessian-free optimization method for deep networks with negative curvature direction detection... 详细信息
来源: 评论
parallelizing Julia with a Non-Invasive DSL  31
Parallelizing Julia with a Non-Invasive DSL
收藏 引用
31st European Conference on Object-Oriented Programming, ECOOP 2017
作者: Anderson, Todd A. Liu, Hai Kuper, Lindsey Totoni, Ehsan Vitek, Jan Shpeisman, Tatiana Parallel Computing Lab Intel Labs Chile Northeastern University Czech Technical University Prague Czech Republic
Computational scientists often prototype software using productivity languages that offer highlevel programming abstractions. When higher performance is needed, they are obliged to rewrite their code in a lower-level ... 详细信息
来源: 评论
Ternary neural networks with fine-grained quantization
arXiv
收藏 引用
arXiv 2017年
作者: Mellempudi, Naveen Kundu, Abhisek Mudigere, Dheevatsa Das, Dipankar Kaul, Bharat Dubey, Pradeep Parallel Computing Lab Intel Labs Bangalore Parallel Computing Lab Intel Labs Santa ClaraCA
We propose a novel fine-grained quantization (FGQ) method to ternarize pre-trained full precision models, while also constraining activations to 8 and 4-bits. Using this method, we demonstrate minimal loss in classifi... 详细信息
来源: 评论
Mixed precision training with 8-bit floating point
arXiv
收藏 引用
arXiv 2019年
作者: Mellempudi, Naveen Srinivasan, Sudarshan Das, Dipankar Kaul, Bharat Parallel Computing Lab Intel Labs
Reduced precision computation for deep neural networks is one of the key areas addressing the widening 'compute gap' driven by an exponential growth in model size. In recent years, deep learning training has l... 详细信息
来源: 评论
GrAPL 2022 Keynote Speaker: GraphBLAS Beyond Simple Graphs
GrAPL 2022 Keynote Speaker: GraphBLAS Beyond Simple Graphs
收藏 引用
IEEE International Symposium on parallel and Distributed Processing Workshops and Phd Forum (IPDPSW)
作者: Tim Mattson Parallel Computing Lab Intel Labs
来源: 评论
AUTOSPARSE: TOWARDS AUTOMATED SPARSE TRAINING OF DEEP NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2023年
作者: Kundu, Abhisek Mellempudi, Naveen K. Vooturi, Dharma Teja Kaul, Bharat Dubey, Pradeep Parallel Computing Lab Intel Labs India
Sparse training is emerging as a promising avenue for reducing the computational cost of training neural networks. Several recent studies have proposed pruning methods using learnable thresholds to efficiently explore... 详细信息
来源: 评论
PRACTICAL MASSIVELY parallel MONTE-CARLO TREE SEARCH APPLIED TO MOLECULAR DESIGN  9
PRACTICAL MASSIVELY PARALLEL MONTE-CARLO TREE SEARCH APPLIED...
收藏 引用
9th International Conference on Learning Representations, ICLR 2021
作者: Yang, Xiufeng Aasawat, Tanuj Kr Yoshizoe, Kazuki Chugai Pharmaceutical Co. Ltd Japan Parallel Computing Lab - India Intel Labs India RIKEN Center for Advanced Intelligence Project Japan
It is common practice to use large computational resources to train neural networks, known from many examples, such as reinforcement learning applications. However, while massively parallel computing is often used for... 详细信息
来源: 评论
Mixed low-precision deep learning inference using dynamic fixed point
arXiv
收藏 引用
arXiv 2017年
作者: Mellempudi, Naveen Kundu, Abhisek Das, Dipankar Mudigere, Dheevatsa Kaul, Bharat Parallel Computing Lab Intel Labs Bangalore India
We propose a cluster-based quantization method to convert pre-trained full precision weights into ternary weights with minimal impact on the accuracy. In addition we also constrain the activations to 8-bits thus enabl... 详细信息
来源: 评论
Mixed precision training of convolutional neural networks using integer operations
arXiv
收藏 引用
arXiv 2018年
作者: Das, Dipankar Mellempudi, Naveen Mudigere, Dheevatsa Kalamkar, Dhiraj Avancha, Sasikanth Banerjee, Kunal Sridharan, Srinivas Vaidyanathan, Karthik Kaul, Bharat Georganas, Evangelos Heinecke, Alexander Dubey, Pradeep Corbal, Jesus Shustrov, Nikita Dubtsov, Roma Fomenko, Evarist Pirogov, Vadim Parallel Computing Lab Intel Labs India Parallel Computing Lab Intel Labs Seychelles Product Architecture Group Intel OR Singapore Software Services Group Intel OR Singapore
The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand... 详细信息
来源: 评论