咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 15 篇 计算机科学与技术...
    • 12 篇 软件工程
    • 12 篇 生物工程
    • 7 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 核科学与技术
    • 1 篇 安全科学与工程
  • 24 篇 理学
    • 14 篇 数学
    • 12 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 3 篇 化学
    • 2 篇 地球物理学
    • 1 篇 系统科学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...

主题

  • 4 篇 deep neural netw...
  • 2 篇 parallel process...
  • 2 篇 reinforcement le...
  • 2 篇 deep learning
  • 2 篇 magnetic resonan...
  • 2 篇 functional align...
  • 2 篇 fmri
  • 2 篇 convolution
  • 2 篇 program processo...
  • 1 篇 covid-19
  • 1 篇 data parallel
  • 1 篇 conferences
  • 1 篇 chemical activat...
  • 1 篇 spatial
  • 1 篇 computational fl...
  • 1 篇 trees (mathemati...
  • 1 篇 computer archite...
  • 1 篇 sorting
  • 1 篇 standard referen...
  • 1 篇 neural networks

机构

  • 11 篇 parallel computi...
  • 7 篇 parallel computi...
  • 2 篇 riken center for...
  • 2 篇 department of co...
  • 2 篇 parallel computi...
  • 2 篇 center for space...
  • 2 篇 department of as...
  • 2 篇 division of sola...
  • 2 篇 chugai pharmaceu...
  • 2 篇 engineering mech...
  • 2 篇 parallel computi...
  • 1 篇 parallel computi...
  • 1 篇 parallel computi...
  • 1 篇 health ethics an...
  • 1 篇 iit kharagpur
  • 1 篇 stony brook univ...
  • 1 篇 department of ph...
  • 1 篇 parallel computi...
  • 1 篇 university of tu...
  • 1 篇 university of co...

作者

  • 10 篇 kaul bharat
  • 9 篇 mudigere dheevat...
  • 9 篇 das dipankar
  • 7 篇 avancha sasikant...
  • 6 篇 kundu abhisek
  • 6 篇 mellempudi navee...
  • 6 篇 dubey pradeep
  • 4 篇 kalamkar dhiraj
  • 3 篇 van halem irmhil...
  • 3 篇 tithi jesmin jah...
  • 3 篇 westerlund magnu...
  • 3 篇 georganas evange...
  • 3 篇 banerjee kunal
  • 3 篇 vooturi dharma t...
  • 3 篇 kararigas georgi...
  • 3 篇 heinecke alexand...
  • 3 篇 zicari roberto v...
  • 2 篇 santara anirban
  • 2 篇 benomar othman
  • 2 篇 aasawat tanuj kr

语言

  • 34 篇 英文
检索条件"机构=Parallel Computing Lab at Intel Labs"
34 条 记 录,以下是21-30 订阅
排序:
High Performance Non-uniform FFT on Modern X86-based Multi-core Systems
High Performance Non-uniform FFT on Modern X86-based Multi-c...
收藏 引用
International Symposium on parallel and Distributed Processing (IPDPS)
作者: Dhiraj D. Kalamkar Joshua D. Trzaskoz Srinivas Sridharan Mikhail Smelyanskiy Daehyun Kim Armando Manduca Yunhong Shu Matt A. Bernstein Bharat Kaul Pradeep Dubey Parallel Computing Lab Intel Labs Bangalore KA India Mayo Clinic Minnesota Rochester MN US Parallel Computing Laboratory INTEL Research Laboratory Santa Clara CA USA Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA Parallel Computing Lab Intel Labs Santa Clara CA USA Department of Radiology Mayo Clinic Rochester MN USA
The Non-Uniform Fast Fourier Transform (NUFFT) is a generalization of FFT to non-equidistant samples. It has many applications which vary from medical imaging to radio astronomy to the numerical solution of partial di... 详细信息
来源: 评论
Practical massively parallel monte-carlo tree search applied to molecular design
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Xiufeng Aasawat, Tanuj Kr Yoshizoe, Kazuki Chugai Pharmaceutical Co. Ltd Parallel Computing Lab - India Intel Labs RIKEN Center for Advanced Intelligence Project
It is common practice to use large computational resources to train neural networks, known from many examples, such as reinforcement learning applications. However, while massively parallel computing is often used for... 详细信息
来源: 评论
A semi-supervised method for multi-subject FMRI functional alignment
A semi-supervised method for multi-subject FMRI functional a...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Javier S. Turek Theodore L. Willke Po-Hsuan Chen Peter J. Ramadge Parallel Computing Lab Intel Labs Hillsboro Oregon USA Department of Electrical Engineering Princeton University New Jersey USA
Practical limitations on the duration of individual fMRI scans have led neuroscientist to consider the aggregation of data from multiple subjects. Differences in anatomical structures and functional topographies of br... 详细信息
来源: 评论
Scalable Bayesian optimization using deep neural networks  32
Scalable Bayesian optimization using deep neural networks
收藏 引用
32nd International Conference on Machine Learning, ICML 2015
作者: Snoek, Jasper Ripped, Oren Swersky, Kevin Kiros, Ryan Satish, Nadathur Sundaram, Narayanan Patwary, Md. Mostofa Ali Prabhat Adams, Ryan P. Harvard University School of Engineering and Applied Sciences United States Massachusetts Institute of Technology Department of Mathematics United States University of Toronto Department of Computer Science Canada Intel Labs Parallel Computing Lab Switzerland NERSC Lawrence Berkeley National Laboratory United States
Bayesian optimization is an effective methodology for the global optimization of functions with expensive evaluations. It relies on querying a distribution over functions defined by a relatively cheap surrogate model.... 详细信息
来源: 评论
Miss-Correlation Folding: Encoding Per-Block Miss Correlations in Compressed DRAM for Data Prefetching
Miss-Correlation Folding: Encoding Per-Block Miss Correlatio...
收藏 引用
IEEE International parallel & Distributed Processing Symposium
作者: Gang Liu Jih-Kwon Peir Victor Lee Department of Computer & Information Science & Eng University of Florida Gainesville FL USA Parallel Computing Lab Intel Labs Intel Corporation Santa Clara CA USA
Cache misses frequently exhibit repeated streaming behavior, i.e. a sequence of cache misses has a high tendency of being repeated. Correlation-based prefetchers record the missing streams in a history table for accur... 详细信息
来源: 评论
Hierarchical block sparse neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Vooturi, Dharma Teja Mudigere, Dheevatsa Avancha, Sashikanth Center for Security Theory and Algorithmic Research International Institute of Information Technology - Hyderabad Hyderabad India Parallel Computing Lab Intel Labs India
Sparse deep neural networks(DNNs) are efficient in both memory and compute when compared to dense DNNs. But due to irregularity in computation of sparse DNNs, their efficiencies are much lower than that of dense DNNs ... 详细信息
来源: 评论
A study of BFLOAT16 for deep learning training
arXiv
收藏 引用
arXiv 2019年
作者: Kalamkar, Dhiraj Mudigere, Dheevatsa Mellempudi, Naveen Das, Dipankar Banerjee, Kunal Avancha, Sasikanth Vooturi, Dharma Teja Jammalamadaka, Nataraj Huang, Jianyu Yuen, Hector Yang, Jiyan Park, Jongsoo Heinecke, Alexander Georganas, Evangelos Srinivasan, Sudarshan Kundu, Abhisek Smelyanskiy, Misha Kaul, Bharat Dubey, Pradeep Parallel Computing Lab Intel Labs Facebook 1 Hacker Way Menlo ParkCA United States IIIT Hyderabad Lab126 Amazon
This paper presents the first comprehensive empirical study demonstrating the efficacy of the Brain Floating Point (BFLOAT16) half-precision format for Deep Learning training across image classification, speech recogn... 详细信息
来源: 评论
MILC staggered conjugate gradient performance on intel KNL  34
MILC staggered conjugate gradient performance on Intel KNL
收藏 引用
34th Annual International Symposium on Lattice Field Theory, LATTICE 2016
作者: Li, Ruizi DeTar, Carleton Doerfler, Douglas Gottlieb, Steven Jha, Ashish Kalamkar, Dhiraj Toussaint, Doug Department of Physics Indiana University BloomingtonIN47405 United States Department of Physics and Astronomy University of Utah Salt Lake CityUT84112 United States National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Software and Services Group Intel Corporation HillsboroOR97124 United States Parallel Computing Lab Intel Labs Bangalore560103 India Physics Department University of Arizona TucsonAZ85721 United States
We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the MILC code for use with the intel Knights Landing (KNL) architecture. KNL is the second generation intel Xeon Phi processor. It... 详细信息
来源: 评论
Z-Inspection®: A Process to Assess Trustworthy AI
IEEE Transactions on Technology and Society
收藏 引用
IEEE Transactions on Technology and Society 2021年 第2期2卷 83-97页
作者: Zicari, Roberto V. Brodersen, John Brusseau, James Dudder, Boris Eichhorn, Timo Ivanov, Todor Kararigas, Georgios Kringen, Pedro McCullough, Melissa Moslein, Florian Mushtaq, Naveed Roig, Gemma Sturtz, Norman Tolle, Karsten Tithi, Jesmin Jahan Van Halem, Irmhild Westerlund, Magnus Frankfurt Big Data Lab Goethe University Frankfurt Frankfurt Germany Department of Public Health Section of General Practice and Research Unit for General Practice Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark Philosophy Department Pace University New YorkNY United States Department of Computer Science University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Iceland Institute of the Law and Regulation of Digitalization Philipps-University Marburg Marburg Germany Parallel Computing Labs Intel Labs Santa ClaraCA United States Department of Computer Science Arcada University of Applied Sciences Helsinki Finland Primary Health Care Research Unit Copenhagen1014 Denmark
The ethical and societal implications of artificial intelligence systems raise concerns. In this article, we outline a novel process based on applied ethics, namely, Z-Inspection®, to assess if an AI system is tr... 详细信息
来源: 评论
Hardware acceleration of sparse and irregular tensor computations of ML models: A survey and insights
arXiv
收藏 引用
arXiv 2020年
作者: Dave, Shail Baghdadi, Riyadh Nowatzki, Tony Avancha, Sasikanth Shrivastava, Aviral Li, Baoxin School of Computing Informatics and Decision Systems Engineering Arizona State University TempeAZ85281 United States Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology CambridgeMA02139 United States School of Computer Science University of California Los AngelesCA90095 United States Parallel Computing Lab at Intel Labs Bangalore India
Machine learning (ML) models are widely used in many important domains. For efficiently processing these computational- and memory-intensive applications, tensors of these over-parameterized models are compressed by l... 详细信息
来源: 评论