We present novel approaches to electromagnetic design of high-temperature superconducting quarter-wave parallel coupled-line microstrip filters. The dielectric constant of substrate materials used in high-temperature ...
详细信息
We present novel approaches to electromagnetic design of high-temperature superconducting quarter-wave parallel coupled-line microstrip filters. The dielectric constant of substrate materials used in high-temperature superconductor technology is too large to be accurately treated by traditional microwave circuit design software packages with analytical/empirical models. We employ electromagnetic field simulation and develop a look-up table method and a powerful space mapping optimization technique, which dramatically reduce the CPU time for the design process.< >
Microservice architectures are increasingly used to modularize IoT applications and deploy them in distributed and heterogeneous edge computing environments. Over time, these microservice-based IoT applications are su...
详细信息
Microservice architectures are increasingly used to modularize IoT applications and deploy them in distributed and heterogeneous edge computing environments. Over time, these microservice-based IoT applications are susceptible to performance anomalies caused by resource hogging (e.g., CPU or memory), resource contention, etc., which can negatively impact their Quality of Service and violate their Service Level Agreements. Existing research on performance anomaly detection for edge computing environments focuses on model training approaches that either achieve high accuracy at the expense of a time-consuming and resource-intensive training process or prioritize training efficiency at the cost of lower accuracy. To address this gap, while considering the resource constraints and the large number of devices in modern edge platforms, we propose two clustering-based model training approaches: (1) intra-cluster parameter transfer learning-based model training (ICPTL) and (2) cluster-level model training (CM). These approaches aim to find a trade-off between the training efficiency of anomaly detection models and their accuracy. We compared the models trained under ICPTL and CM to models trained for specific devices (most accurate, least efficient) and a single general model trained for all devices (least accurate, most efficient). Our findings show that ICPTL’s model accuracy is comparable to that of the model per device approach while requiring only 40% of the training time. In addition, CM further improves training efficiency by requiring 23% less training time and reducing the number of trained models by approximately 66% compared to ICPTL, yet achieving a higher accuracy than a single general model.
暂无评论