Modern genotyping technologies are able to obtain up to a few million genetic markers (such as SNPs) of an individual within a few minutes of time. Detecting epistasis, such as SNP-SNP interactions, in Genome-Wide Ass...
详细信息
As the end of Moores-law is on the horizon, power becomes a limiting factor to continuous increases in performance gains for single-core processors. Processor engineers have shifted to the multicore paradigm and many-...
详细信息
As the end of Moores-law is on the horizon, power becomes a limiting factor to continuous increases in performance gains for single-core processors. Processor engineers have shifted to the multicore paradigm and many-core processors are a reality. Within the context of these multi-core chips, three key metrics point themselves out as being of major importance, performance, fault-tolerance (including yield), and power consumption. A solution that optimizes all three of these metrics is challenging. As the number of cores increases the importance of the interconnection network-on-chip (NoC) grows as well, and chip designers should aim to optimize these three key metrics in the NoC context as well. In this paper we identify and discuss the main properties that a NoC must exhibit in order to enable such optimizations. In particular, we propose the use of virtualization techniques at the NoC level. AS a major finding, we identify the implementation of routing algorithms to become a key design parameter in order to achieve an effective virtualization of the chip should also supporting broadcast within the virtualized context. The intention behind this paper is for it to serve as a position paper on the topic of virtualization for NoC and the challenges that should be met at the routing layer in order to maximize performance, fault-tolerance and power consumption in multicore chips.
The expected increase in number of cores on a single chip leads to the necessity of high-performance on chip interconnects (NoC). Furthermore, in order to fully utilize the abundance of cores, the chip is expected to ...
详细信息
The expected increase in number of cores on a single chip leads to the necessity of high-performance on chip interconnects (NoC). Furthermore, in order to fully utilize the abundance of cores, the chip is expected to support a number of applications running on the chip simultaneously. It is therefore necessary to partition the chip to support numerous applications without any risk of interference between them. The success of this depends on the flexibility of the underlying routing algorithm. This paper presents a flexible routing algorithm based on dimension ordered routing, which supports a large variety of irregular (2-D and 3-D) mesh topologies. The algorithm provides high efficiency at very low additional complexity, as is confirmed by experimental results.
As the end of Moores-law is on the horizon, power becomes a limiting factor to continuous increases in performance gains for single-core processors. Processor engineers have shifted to the multicore paradigm and many-...
详细信息
暂无评论