咨询与建议

限定检索结果

文献类型

  • 74 篇 会议
  • 24 篇 期刊文献

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 39 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 16 篇 信息与通信工程
    • 16 篇 生物工程
    • 6 篇 机械工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 控制科学与工程
    • 4 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 水利工程
    • 1 篇 轻工技术与工程
  • 32 篇 理学
    • 15 篇 生物学
    • 13 篇 数学
    • 12 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 大气科学
    • 1 篇 系统科学
  • 28 篇 管理学
    • 18 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 6 篇 法学
    • 6 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 外国语言文学

主题

  • 8 篇 feature extracti...
  • 5 篇 image segmentati...
  • 5 篇 training
  • 4 篇 visualization
  • 3 篇 netconf
  • 3 篇 task analysis
  • 3 篇 three-dimensiona...
  • 3 篇 speech
  • 3 篇 convolution
  • 3 篇 vectors
  • 3 篇 visual communica...
  • 3 篇 behavioral resea...
  • 3 篇 databases
  • 3 篇 semantics
  • 3 篇 histograms
  • 3 篇 clustering algor...
  • 3 篇 image reconstruc...
  • 2 篇 computer network...
  • 2 篇 image matching
  • 2 篇 semantic segment...

机构

  • 37 篇 pattern recognit...
  • 24 篇 pattern recognit...
  • 4 篇 huawei beijing r...
  • 4 篇 pattern recognit...
  • 4 篇 beijing academy ...
  • 4 篇 national lab of ...
  • 4 篇 pattern recognit...
  • 3 篇 shanghai jiao to...
  • 3 篇 pattern recognit...
  • 2 篇 university of sc...
  • 2 篇 department of el...
  • 2 篇 shenzhen key lab...
  • 2 篇 nec labs china
  • 2 篇 guangdong provin...
  • 2 篇 lanzhou universi...
  • 2 篇 pattern recognit...
  • 2 篇 international sc...
  • 2 篇 department of co...
  • 2 篇 beijing universi...
  • 2 篇 sketchx lab scho...

作者

  • 16 篇 jun guo
  • 15 篇 ma zhanyu
  • 15 篇 zhang chuang
  • 15 篇 guo jun
  • 14 篇 zhanyu ma
  • 11 篇 honggang zhang
  • 10 篇 wu ming
  • 8 篇 bin zhang
  • 7 篇 guohui li
  • 5 篇 yan li
  • 5 篇 xuesong gao
  • 5 篇 xu weiran
  • 4 篇 chuang zhang
  • 4 篇 zhiqing lin
  • 3 篇 hong yu
  • 3 篇 xinyu wu
  • 3 篇 bo xiao
  • 3 篇 yang yang
  • 3 篇 weiran xu
  • 3 篇 zhang honggang

语言

  • 95 篇 英文
  • 2 篇 中文
  • 1 篇 其他
检索条件"机构=Pattern Recognition & Intelligent System Lab"
98 条 记 录,以下是11-20 订阅
排序:
Progressive Co-Attention Network for Fine-Grained Visual Classification
Progressive Co-Attention Network for Fine-Grained Visual Cla...
收藏 引用
IEEE Visual Communications and Image Processing (VCIP)
作者: Tian Zhang Dongliang Chang Zhanyu Ma Jun Guo Pattern Recognition and Intelligent System Lab. Beijing University of Posts and Telecommunications Beijing China Beijing Academy of Artificial Intelligence Beijing China
Fine-grained visual classification aims to recognize images belonging to multiple sub-categories within a same category. It is a challenging task due to the inherently subtle variations among highly-confused categorie... 详细信息
来源: 评论
Cross-layer navigation convolutional neural network for fine-grained visual classification
arXiv
收藏 引用
arXiv 2021年
作者: Guo, Chenyu Xie, Jiyang Liang, Kongming Sun, Xian Ma, Zhanyu Pattern Recognition and Intelligent System Lab Beijing University of Posts and Telecommunications Beijing China Aerospace Information Research Institute Chinese Academy of Sciences Beijing China
Fine-grained visual classification (FGVC) aims to classify sub-classes of objects in the same super-class (e.g., species of birds, models of cars). For the FGVC tasks, the essential solution is to find discriminative ... 详细信息
来源: 评论
Structured DropConnect for uncertainty inference in image classification
arXiv
收藏 引用
arXiv 2021年
作者: Zheng, Wenqing Xie, Jiyang Liu, Weidong Ma, Zhanyu Pattern Recognition and Intelligent System Lab Beijing University of Posts and Telecommunications Beijing China China Mobile Research Institute Beijing China Beijing Academy of Artificial Intelligence
With the complexity of the network structure, uncertainty inference has become an important task to improve classification accuracy for artificial intelligence systems. For image classification tasks, we propose a str... 详细信息
来源: 评论
TLRM: Task-level Relation Module for GNN-based Few-Shot Learning
TLRM: Task-level Relation Module for GNN-based Few-Shot Lear...
收藏 引用
IEEE Visual Communications and Image Processing (VCIP)
作者: Yurong Guo Zhanyu Ma Xiaoxu Li Yuan Dong Pattern Recognition and Intelligent System Lab. Beijing University of Posts and Telecommunications Beijing China Beijing Academy of Artificial Intelligence Beijing China Lanzhou University of Technology Lanzhou China
Recently, graph neural networks (GNNs) have shown powerful ability to handle few-shot classification problem, which aims at classifying unseen samples when trained with limited labeled samples per class. GNN-based few... 详细信息
来源: 评论
Fgsd: A dataset for fine-grained ship detection in high resolution satellite images
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Kaiyan Wu, Ming Liu, Jiaming Zhang, Chuang Pattern Recognition and Intelligent System Lab Beijing University of Posts and Telecommunications Beijing China
Ship detection using high-resolution remote sensing images is an important task, which contribute to sea surface regulation. The complex background and special visual angle make ship detection relies in high quality d... 详细信息
来源: 评论
C-DLinkNet: Considering Multi-level semantic features for human parsing
arXiv
收藏 引用
arXiv 2020年
作者: Lu, Yu Feng, Muyan Wu, Ming Zhang, Chuang Pattern Recognition and Intelligent System Lab Beijing University of Posts and Telecommunications Beijing China
Human parsing is an essential branch of semantic segmentation, which is a fine-grained semantic segmentation task to identify the constituent parts of human. The challenge of human parsing is to extract effective sema... 详细信息
来源: 评论
Survey on Deep Face Restoration: From Non-blind to Blind and Beyond
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenjie Wang, Mei Zhang, Kai Li, Juncheng Li, Xiaoming Zhang, Yuhang Gao, Guangwei Deng, Weihong Lin, Chia-Wen The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The Computer Vision Lab ETH Zürich Zürich Switzerland The School of Communication and Information Engineering Shanghai University Shanghai China The Nanyang Technological University Singapore The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical Engineering National Tsing Hua University Hsinchu Taiwan
Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ) face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to signi... 详细信息
来源: 评论
Graph Convolution Based Cross-Network Multi-Scale Feature Fusion for Deep Vessel Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Gangming Liang, Kongming Pan, Chengwei Zhang, Fandong Wu, Xianpeng Hu, Xinyang Yu, Yizhou The Department of Computer Science The University of Hong Kong Hong Kong Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Institute of Artificial Intelligence Beihang University Beijing China The AI Lab Deepwise Healthcare Beijing China Department of Cardiology of the Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China Key Laboratory of Cardiovascular of Zhejiang Province Hangzhou China
Vessel segmentation is widely used to help with vascular disease diagnosis. Vessels reconstructed using existing methods are often not sufficiently accurate to meet clinical use standards. This is because 3D vessel st... 详细信息
来源: 评论
Comparison of Backbones for Semantic Segmentation Network  5
Comparison of Backbones for Semantic Segmentation Network
收藏 引用
2020 5th International Conference on intelligent Computing and Signal Processing, ICSP 2020
作者: Zhang, Rongyu Du, Lixuan Xiao, Qi Liu, Jiaming International School Beijing University of Post and Telecommunication Beijing100876 China International School of BusinessandFiance Sun Yat-Sen University Guangzhou510275 China Pattern Recognition and Intelligent System Lab Beijing University of Posts and Telecommunications Beijing100876 China
As for the classification network that is constantly emerging with each passing day, different classification network as the backbone of the semantic segmentation network may show different performance. This paper sel... 详细信息
来源: 评论
Tracking system for driving assistance with the faster R-CNN  2nd
Tracking system for driving assistance with the faster R-CNN
收藏 引用
2nd International Conference on Computer, Communication and Computational Sciences, IC4S 2017
作者: Yang, Kai Zhang, Chuang Wu, Ming Pattern Recognition and Intelligent System Lab School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing China
The vehicle detection and tracking in driving assistance system are ordinarily achieved by the optical or radar technology. In this work, we explore video processing for driving assistance system. An object’s detecti... 详细信息
来源: 评论