咨询与建议

限定检索结果

文献类型

  • 205 篇 会议
  • 123 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 59 篇 信息与通信工程
    • 46 篇 光学工程
    • 46 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 21 篇 控制科学与工程
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 143 篇 理学
    • 67 篇 物理学
    • 63 篇 数学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 11 篇 化学
    • 6 篇 系统科学
  • 50 篇 管理学
    • 35 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 20 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 25 篇 computer vision
  • 20 篇 pattern recognit...
  • 18 篇 feature extracti...
  • 16 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 image reconstruc...
  • 12 篇 image edge detec...
  • 11 篇 semantics
  • 10 篇 image color anal...
  • 9 篇 image recognitio...
  • 9 篇 shape
  • 8 篇 face recognition
  • 8 篇 computer graphic...
  • 8 篇 image processing
  • 8 篇 training
  • 7 篇 hidden markov mo...
  • 7 篇 generative adver...
  • 6 篇 support vector m...
  • 6 篇 three-dimensiona...
  • 6 篇 lighting

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 33 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 7 篇 pattern recognit...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 institute for co...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 26 篇 yu qiao
  • 26 篇 dong chao
  • 19 篇 pal umapada
  • 18 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 maier andreas
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 schnörr christop...
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...

语言

  • 325 篇 英文
  • 7 篇 其他
检索条件"机构=Pattern Recognition Lab Computer Vision Group"
332 条 记 录,以下是1-10 订阅
排序:
Generalist Segmentation Algorithm for Photoreceptors Analysis in Adaptive Optics Imaging  27th
Generalist Segmentation Algorithm for Photoreceptors Analys...
收藏 引用
27th International Conference on pattern recognition, ICPR 2024
作者: Kulyabin, Mikhail Sindel, Aline Pedersen, Hilde R. Gilson, Stuart Baraas, Rigmor Maier, Andreas Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany National Centre for Optics Vision and Eye Care Faculty of Health and Social Sciences University of South-Eastern Norway Kongsberg Norway
Analyzing the cone photoreceptor pattern in images obtained from the living human retina using quantitative methods can be crucial for the early detection and management of various eye conditions. Confocal adaptive op... 详细信息
来源: 评论
Non-Uniform Illumination Attack for Fooling Convolutional Neural Networks
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年
作者: Jain, Akshay Dubey, Shiv Ram Singh, Satish Kumar Santosh, K.C. Chaudhuri, Bidyut Baran Indian Institute of Information Technology Allahabad Computer Vision and Biometrics Lab Department of Information Technology Uttar Pradesh Prayagraj211015 India University of South Dakota AI Research Lab Department of Computer Science VermillionSD57069 United States Indian Statistical Institute Computer Vision and Pattern Recognition Unit Kolkata700108 India
Convolutional Neural Networks (CNNs) have made remarkable strides;however, they remain susceptible to vulnerabilities, particularly to image perturbations that humans can easily recognize. This weakness, often termed ... 详细信息
来源: 评论
CodePhys: Robust Video-Based Remote Physiological Measurement Through Latent Codebook Querying
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2025年 PP卷 PP页
作者: Chu, Shuyang Xia, Menghan Yuan, Mengyao Liu, Xin Seppanen, Tapio Zhao, Guoying Shi, Jingang Xi'an Jiaotong University School of Software Engineering Xi'an China Tencent Ai Lab Shenzhen China Lappeenranta-Lahti University of Technology Lut Computer Vision and Pattern Recognition Laboratory Lappeenranta53850 Finland University of Oulu Center for Machine Vision and Signal Analysis Finland
Remote photoplethysmography (rPPG) aims to measure non-contact physiological signals from facial videos, which has shown great potential in many applications. Most existing methods directly extract video-based rPPG fe... 详细信息
来源: 评论
CodePhys: Robust Video-based Remote Physiological Measurement through Latent Codebook Querying
arXiv
收藏 引用
arXiv 2025年
作者: Chu, Shuyang Xia, Menghan Yuan, Mengyao Liu, Xin Seppanen, Tapio Zhao, Guoying Shi, Jingang The School of Software Engineering Xi’an Jiaotong University Xi’an China The Tencent AI Lab Shenzhen China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland The Center for Machine Vision and Signal Analysis University of Oulu Finland
Remote photoplethysmography (rPPG) aims to measure non-contact physiological signals from facial videos, which has shown great potential in many applications. Most existing methods directly extract video-based rPPG fe... 详细信息
来源: 评论
LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Boyu Yue, Zhengrong Chen, Siran Wang, Zikang Liu, Yang Li, Peng Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tsinghua University Beijing China Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine... 详细信息
来源: 评论
Robust recognition of 1-D barcodes using camera phones
Robust recognition of 1-D barcodes using camera phones
收藏 引用
作者: Wachenfeld, Steffen Terlunen, Sebastian Jiang, Xiaoyi Department of Computer Science Computer Vision and Pattern Recognition Group University of Munster Germany
In this paper we present an algorithm for the recognition of 1D barcodes using camera phones, which is highly robust regarding the the typical image distortions. We have created a database of barcode images, which cov... 详细信息
来源: 评论
DarkGAN: Night Image Enhancement Using Generative Adversarial Networks  5th
DarkGAN: Night Image Enhancement Using Generative Adversaria...
收藏 引用
5th International Conference on computer vision and Image Processing, CVIP 2020
作者: Alaspure, Prasen Hambarde, Praful Dudhane, Akshay Murala, Subrahmanyam Computer Vision and Pattern Recognition Lab IIT Ropar Rupnagar India
Low light image enhancement is one of the challenging tasks in computer vision, and it becomes more difficult when images are very dark. Recently, most of low light image enhancement work is done either on synthetic d... 详细信息
来源: 评论
Hidden Markov model-unscented Kalman filter contour tracking: A multi-cue and multi-resolution approach
Hidden Markov model-unscented Kalman filter contour tracking...
收藏 引用
Iranian Conference on Machine vision and Image Processing
作者: Moayedi, Fatemeh Kazemi, Alireza Azimifar, Zohreh Computer Vision and Pattern Recognition Group School of Electrical and Computer Engineering Shiraz University shiraz Iran
This paper present a novel attempt to introduce an HMM-based multi-resolution and multi-cue segmentation in combination with the unscented Kalman filter tracking method. It combines multiple features distribution and ... 详细信息
来源: 评论
Kernel-based recognition of human actions using spatiotemporal salient points
Kernel-based recognition of human actions using spatiotempor...
收藏 引用
2006 Conference on computer vision and pattern recognition Workshops
作者: Oikonomopoulos, A. Patras, I. Pantic, M. Computing Department Imperial College London Computer Vision and Pattern Recognition Group University of York
This paper addresses the problem of human action recognition by introducing a sparse representation of image sequences as a collection of spatiotemporal events that are localized at points that are salient both in spa... 详细信息
来源: 评论
Nonlinear shape statistics via kernel spaces  23rd
收藏 引用
23rd German Association for pattern recognition Symposium, DAGM 2001
作者: Cremers, Daniel Kohlberger, Timo Schnörr, Christoph Computer Vision Graphics and Pattern Recognition Group Department of Mathematics and Computer Science University of Mannheim Mannheim68131 Germany
We present a novel approach for representing shape knowledge in terms of example views of 3D objects. Typically, such data sets exhibit a highly nonlinear structure with distinct clusters in the shape vector space, pr... 详细信息
来源: 评论