咨询与建议

限定检索结果

文献类型

  • 205 篇 会议
  • 123 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 59 篇 信息与通信工程
    • 46 篇 光学工程
    • 46 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 21 篇 控制科学与工程
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 143 篇 理学
    • 67 篇 物理学
    • 63 篇 数学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 11 篇 化学
    • 6 篇 系统科学
  • 50 篇 管理学
    • 35 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 20 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 25 篇 computer vision
  • 20 篇 pattern recognit...
  • 18 篇 feature extracti...
  • 16 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 image reconstruc...
  • 12 篇 image edge detec...
  • 11 篇 semantics
  • 10 篇 image color anal...
  • 9 篇 image recognitio...
  • 9 篇 shape
  • 8 篇 face recognition
  • 8 篇 computer graphic...
  • 8 篇 image processing
  • 8 篇 training
  • 7 篇 hidden markov mo...
  • 7 篇 generative adver...
  • 6 篇 support vector m...
  • 6 篇 three-dimensiona...
  • 6 篇 lighting

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 33 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 7 篇 pattern recognit...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 institute for co...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 26 篇 yu qiao
  • 26 篇 dong chao
  • 19 篇 pal umapada
  • 18 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 maier andreas
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 schnörr christop...
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...

语言

  • 325 篇 英文
  • 7 篇 其他
检索条件"机构=Pattern Recognition Lab Computer Vision Group"
332 条 记 录,以下是111-120 订阅
排序:
Online non-feedback image re-ranking via dominant data selection
Online non-feedback image re-ranking via dominant data selec...
收藏 引用
20th ACM International Conference on Multimedia, MM 2012
作者: Cao, Chen Chen, Shifeng Li, Yuhong Liu, Jianzhuang Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Department of Information Engineering Chinese University of Hong Kong Hong Kong Media Lab. Huawei Technologies Co. Ltd. China
Image re-ranking aims at improving the precision of keyword-based image retrieval, mainly by introducing visual features to re-rank. Many existing approaches require offline training for every keyword, which are unsui... 详细信息
来源: 评论
A New Forged Handwriting Detection Method Based on Fourier Spectral Density and Variation  5th
A New Forged Handwriting Detection Method Based on Fourier S...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Kundu, Sayani Shivakumara, Palaiahnakote Grouver, Anaica Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Ultimo Australia
Use of handwriting words for person identification in contrast to biometric features is gaining importance in the field of forensic applications. As a result, forging handwriting is a part of crime applications and he... 详细信息
来源: 评论
Multi-dimension modulation for image restoration with dynamic controllable residual Learning
arXiv
收藏 引用
arXiv 2019年
作者: He, Jingwen Dong, Chao Qiaoy, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Based on the great success of deterministic learning, to interactively control the output effects has attracted increasingly attention in the image restoration field. The goal is to generate continuous restored images... 详细信息
来源: 评论
Image-based characterization of the pulp flows
收藏 引用
pattern recognition and Image Analysis 2016年 第3期26卷 630-637页
作者: Sorokin, M. Strokina, N. Eerola, T. Lensu, L. Karttunen, K. Kalviainen, H. Machine Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta University of Technology PO Box 20 LappeenrantaFI-53851 Finland Computer Vision Group Department of Signal Processing Tampere University of Technology PO Box 527 TampereFI-33101 Finland Cemis-Oulu Unit of Measurement Technology Kajaani University Consortium University of Oulu PO Box 127 KajaaniFI-87400 Finland School of Information Technology Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway Selangor Darul Ehsan46150 Malaysia
Material flow characterization is important in the process industries and its further automation. In this study, close-to-laminar pulp suspension flows are analyzed based on double-exposure images captured in laborato... 详细信息
来源: 评论
Real-time range imaging in health care: A survey
Real-time range imaging in health care: A survey
收藏 引用
Dagstuhl 2012 Seminar on Time-of-Flight Imaging: Sensors, Algorithms, and Applications and Workshop on Imaging New Modalities, Held at the German Conference on pattern recognition, GCPR2013
作者: Bauer, Sebastian Seitel, Alexander Hofmann, Hannes Blum, Tobias Wasza, Jakob Balda, Michael Meinzer, Hans-Peter Navab, Nassir Hornegger, Joachim Maier-Hein, Lena Pattern Recognition Lab. Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Junior Group: Computer-assisted Interventions Germany Heidelberg Germany Metrilus GmbH Erlangen Germany Technische Universität München Munich Germany
The recent availability of dynamic, dense, and low-cost range imaging has gained widespread interest in health care. It opens up new opportunities and has an increasing impact on both research and commercial activitie... 详细信息
来源: 评论
A generalized framework for opening doors and drawers in kitchen environments
A generalized framework for opening doors and drawers in kit...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Thomas Rühr Jürgen Sturm Dejan Pangercic Michael Beetz Daniel Cremers Intelligent Autonomous Systems group Computer Science Department Technische Universität München Germany Computer Vision and Pattern Recognition group Computer Science Department Technische Universität München Germany
In this paper, we present a generalized framework for robustly operating previously unknown cabinets in kitchen environments. Our framework consists of the following four components: (1) a module for detecting both La... 详细信息
来源: 评论
Instrument segmentation in hybrid 3-D endoscopy using multi-sensor super-Resolution
Instrument segmentation in hybrid 3-D endoscopy using multi-...
收藏 引用
Annual Meeting of CURAC (computer-und Roboterassistierte Chirurgie), CURAC 2013
作者: Haase, S. Köhler, T. Kilgus, T. Maier-Hein, L. Hornegger, J. Feußner, H. Dept. of Computer Science Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Germany Div. Medical and Biological Informatics Junior Group: Computer-assisted Interventions Heidelberg Germany Research Group Minimally-invasive Interdisciplinary Therapeutical Intervention Klinikum Rechts Der Isar of Technical University Munich Germany
In hybrid 3-D endoscopy, photometric information is augmented by range data for guidance in minimally invasive procedures. In this paper, we propose a method for instrument segmentation exploiting sensor data fusion b... 详细信息
来源: 评论
A comparision of Model-based methods for knee cartilage segmentation
A comparision of Model-based methods for knee cartilage segm...
收藏 引用
2nd International Conference on computer vision Theory and Applications, VISAPP 2007
作者: Cheong, J. Faggian, N. Langs, G. Suter, D. Cicuttini, F. Dept. of Electrical Dept. of Computer Systems Engineering Monash University Australia Clayton School of Information Technology Monash University Australia Institute for Computer Graphics and Vision Graz University of Technology Austria Pattern Recognition and Image Processing Group Vienna University of Technology Austria Dept. of Epidemiology Dept. of Preventive Medicine Monash University Australia
Osteoarthritis is a chronic and crippling disease affecting an increasing number of people each year. With no known cure, it is expected to reach epidemic proportions in the near future. Accurate segmentation of knee ... 详细信息
来源: 评论
A New DCT-FFT Fusion Based Method for Caption and Scene Text Classification in Action Video Images  2nd
A New DCT-FFT Fusion Based Method for Caption and Scene Text...
收藏 引用
2nd International Conference on pattern recognition and Artificial Intelligence, ICPRAI 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Manna, Suvojit Pal, Umapada Lu, Tong Blumenstein, Michael Faculty of Computer Science and Information Technology University of Malayasia Kuala Lumpur Malaysia Department of Computer Science and Engineering Jalpaiguri Government Engineering College Jalpaiguri India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China University of Technology Sydney Ultimo Australia
Achieving better recognition rate for text in video action images is challenging due to multi-type texts with unpredictable backgrounds. We propose a new method for the classification of captions (which is edited text... 详细信息
来源: 评论
Neural Transformation Fields for Arbitrary-Styled Font Generation
Neural Transformation Fields for Arbitrary-Styled Font Gener...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Junjun He Jianjun Wang Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG), aiming at generating font images with a few samples, is an emerging topic in recent years due to the academic and commercial values. Typically, the FFG approaches follow the style-conte...
来源: 评论