咨询与建议

限定检索结果

文献类型

  • 205 篇 会议
  • 123 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 59 篇 信息与通信工程
    • 46 篇 光学工程
    • 46 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 21 篇 控制科学与工程
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 143 篇 理学
    • 67 篇 物理学
    • 63 篇 数学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 11 篇 化学
    • 6 篇 系统科学
  • 50 篇 管理学
    • 35 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 20 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 25 篇 computer vision
  • 20 篇 pattern recognit...
  • 18 篇 feature extracti...
  • 16 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 image reconstruc...
  • 12 篇 image edge detec...
  • 11 篇 semantics
  • 10 篇 image color anal...
  • 9 篇 image recognitio...
  • 9 篇 shape
  • 8 篇 face recognition
  • 8 篇 computer graphic...
  • 8 篇 image processing
  • 8 篇 training
  • 7 篇 hidden markov mo...
  • 7 篇 generative adver...
  • 6 篇 support vector m...
  • 6 篇 three-dimensiona...
  • 6 篇 lighting

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 33 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 7 篇 pattern recognit...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 institute for co...
  • 6 篇 university of ma...

作者

  • 58 篇 qiao yu
  • 26 篇 yu qiao
  • 25 篇 dong chao
  • 18 篇 umapada pal
  • 18 篇 pal umapada
  • 17 篇 wang yali
  • 16 篇 maier andreas
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 16 篇 lu tong
  • 14 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 schnörr christop...
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...

语言

  • 325 篇 英文
  • 7 篇 其他
检索条件"机构=Pattern Recognition Lab Computer Vision Group"
332 条 记 录,以下是121-130 订阅
排序:
Finding discriminative filters for specific degradations in blind super-resolution  21
Finding discriminative filters for specific degradations in ...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Liangbin Xie Xintao Wang Chao Dong Zhongang Qi Ying Shan Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences and ARC Lab Tencent PCG ARC Lab Tencent PCG Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and Shanghai AI Laboratory Shanghai China
Recent blind super-resolution (SR) methods typically consist of two branches, one for degradation prediction and the other for conditional restoration. However, our experiments show that a one-branch network can achie...
来源: 评论
Neural Transformation Fields for Arbitrary-Styled Font Generation
Neural Transformation Fields for Arbitrary-Styled Font Gener...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Junjun He Jianjun Wang Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG), aiming at generating font images with a few samples, is an emerging topic in recent years due to the academic and commercial values. Typically, the FFG approaches follow the style-conte...
来源: 评论
Non-deterministic behavior of ranking-based metrics when evaluating embeddings
arXiv
收藏 引用
arXiv 2018年
作者: Nicolaou, Anguelos Dey, Sounak Christlein, Vincent Maier, Andreas Karatzas, Dimosthenis Computer Vision Center Edificio O Campus UAB Bellaterra08193 Spain Pattern Recognition Lab Friedrich-Alexander-Universitat Erlangen-Nurnberg
Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis... 详细信息
来源: 评论
Multiple objects segmentation based on Maximum-likelihood Estimation and Optimum Entropy-distribution(MLE-OED)
Proceedings - International Conference on Pattern Recognitio...
收藏 引用
Proceedings - International Conference on pattern recognition 2002年 第1期16卷 707-710页
作者: Jun, Xie Tsui, H.T. Deshen, Xia Image Processing and Computer Vision Lab Department of Electronic Engineering Chinese University of Hong Kong Hong Kong Pattern Recognition Lab Department of Computer Science Nanjing University of Sci. and Tech. China
A new method based on MLE-OED is proposed for unsupervised image segmentation of multiple objects which have fuzzy edges. It adjusts the parameters of a mixture of Gaussian distributions via minimizing a new loss func... 详细信息
来源: 评论
PA3D: Pose-Action 3D Machine for Video recognition
PA3D: Pose-Action 3D Machine for Video Recognition
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: An Yan Yali Wang Zhifeng Li Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Tencent AI Lab
Recent studies have witnessed the successes of using 3D CNNs for video action recognition. However, most 3D models are built upon RGB and optical flow streams, which may not fully exploit pose dynamics, i.e., an impor... 详细信息
来源: 评论
Anomaly Handwritten Text Detection for Automatic Descriptive Answer Evaluation  11
Anomaly Handwritten Text Detection for Automatic Descriptive...
收藏 引用
11th International Conference on Computing and pattern recognition, ICCPR 2022
作者: Chatterjee, Nilanjana Shivakumara, Palaiahnaakote Pal, Umapada Lu, Tong Lu, Yue Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China
Although there are advanced technologies for character recognition, automatic descriptive answer evaluation is an open challenge for the document image analysis community due to large diversified handwritten text and ... 详细信息
来源: 评论
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reconstruction
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reco...
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiaoxing Zeng Xiaojiang Peng Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology University of Chinese Academy of Sciences China
Reconstructing the detailed geometric structure from a single face image is a challenging problem due to its ill-posed nature and the fine 3D structures to be recovered. This paper proposes a deep Dense-Fine-Finer Net... 详细信息
来源: 评论
Word-Wise Handwriting Based Gender Identification Using Multi-Gabor Response Fusion  4th
Word-Wise Handwriting Based Gender Identification Using Mult...
收藏 引用
4th Workshop on Document Analysis and recognition, DAR 2018, held in Conjunction with the 11th Indian Conference on vision, Graphics, and Image Processing, ICVGIP 2018
作者: Asadzadeh Kaljahi, Maryam Vidya Varshini, P.V. Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Guru, D.S. Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Vellore Institute of Technology VelloreTamil Nadu India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China Department of Studies in Computer Science Manasagangotri University of Mysuru Mysore India
Handwriting based gender identification at the word level is challenging due to free style writing, use of different scripts, and inadequate information. This paper presents a new method based on Multi-Gabor Response ... 详细信息
来源: 评论
AFiT - Atrial fibrillation ablation planning tool
AFiT - Atrial fibrillation ablation planning tool
收藏 引用
16th International Workshop on vision, Modeling and Visualization, VMV 2011
作者: Brost, A. Bourier, F. Kleinoeder, A. Raab, J. Koch, M. Stamminger, M. Hornegger, J. Strobel, N. Kurzidim, K. Pattern Recognition Lab. Friedrich-Alexander-University Erlangen-Nuremberg Erlangen Germany Klinik fur Herzrhythmusstorungen Krankenhaus Barmherzige Brüder Regensburg Germany Computer Graphics Group Friedrich-Alexander-University Erlangen-Nuremberg Erlangen Germany Siemens AG Forcheim Germany
The planning of cryo-balloon ablations for treatment of atrial fibrillation is a crucial task for a physician as he has to determine which size of the balloon catheter is required for isolation at each pulmonary vein.... 详细信息
来源: 评论
EFFICIENT ONLINE labEL CONSISTENT HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CR...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Yi, Jinhan Liu, Xin Cheung, Yiu-Ming Xu, Xing Fan, Wentao He, Yi Department of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Lab. of Computer Vision and Pattern Recognition Fujian Key Lab. of Big Data Intelligence and Security China Department of Computer Science Hong Kong Baptist University Kowloon Hong Kong School of Computer Science and Engineering University of Electronic Science and Technology of China China Provincial Key Laboratory for Computer Information Processing Technology Soochow University China
Existing cross-modal hashing still faces three challenges: (1) Most batch-based methods are unsuitable for processing large-scale and streaming data. (2) Current online methods often suffer from insufficient semantic ... 详细信息
来源: 评论