咨询与建议

限定检索结果

文献类型

  • 205 篇 会议
  • 123 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 59 篇 信息与通信工程
    • 46 篇 光学工程
    • 46 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 21 篇 控制科学与工程
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 143 篇 理学
    • 67 篇 物理学
    • 63 篇 数学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 11 篇 化学
    • 6 篇 系统科学
  • 50 篇 管理学
    • 35 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 20 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 25 篇 computer vision
  • 20 篇 pattern recognit...
  • 18 篇 feature extracti...
  • 16 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 image reconstruc...
  • 12 篇 image edge detec...
  • 11 篇 semantics
  • 10 篇 image color anal...
  • 9 篇 image recognitio...
  • 9 篇 shape
  • 8 篇 face recognition
  • 8 篇 computer graphic...
  • 8 篇 image processing
  • 8 篇 training
  • 7 篇 hidden markov mo...
  • 7 篇 generative adver...
  • 6 篇 support vector m...
  • 6 篇 three-dimensiona...
  • 6 篇 lighting

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 33 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 7 篇 pattern recognit...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 institute for co...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 26 篇 yu qiao
  • 26 篇 dong chao
  • 19 篇 pal umapada
  • 18 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 maier andreas
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 schnörr christop...
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...

语言

  • 325 篇 英文
  • 7 篇 其他
检索条件"机构=Pattern Recognition Lab Computer Vision Group"
332 条 记 录,以下是141-150 订阅
排序:
Deformation Robust Text Spotting with Geometric Prior
arXiv
收藏 引用
arXiv 2023年
作者: Hao, Xixuan Zhang, Aozhong Meng, Xianze Fu, Bin ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Hong Kong Hong Kong
The goal of text spotting is to perform text detection and recognition in an end-to-end manner. Although the diversity of luminosity and orientation in scene texts has been widely studied, the font diversity and shape... 详细信息
来源: 评论
Orientation Robust Scene Text recognition in Natural Scene*
Orientation Robust Scene Text Recognition in Natural Scene*
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Xiaolong Chen Zhengfu Zhang Yu Qiao Jiangyu Lai Jian Jiang Zeyu Zhang Bin Fu Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences
In recent years, scene text recognition has achieved significant improvement and various state-of-the-art recognition approaches have been proposed. This paper focused on recognizing text in natural photos of equipmen...
来源: 评论
A semantic model for video based face recognition
A semantic model for video based face recognition
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Dihong Gong Kai Zhu Zhifeng Li Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The Chinese University of Hong Kong Hong Kong
Video-based face recognition has attracted a great deal of attention in recent years due to its wide applications. The challenge of video-based face recognition comes from several aspects. First, video data involves m... 详细信息
来源: 评论
ES6D: A Computation Efficient and Symmetry-Aware 6D Pose Regression Framework
arXiv
收藏 引用
arXiv 2022年
作者: Mo, Ningkai Gan, Wanshui Yokoya, Naoto Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Tokyo Japan RIKEN Japan
In this paper, a computation efficient regression framework is presented for estimating the 6D pose of rigid objects from a single RGB-D image, which is applicable to handling symmetric objects. This framework is desi... 详细信息
来源: 评论
Application of PR techniques to mail sorting in China
Application of PR techniques to mail sorting in China
收藏 引用
2014 7th International C Conference on computer Science and Software Engineering, C3S2E 2014
作者: Liu, Li Lu, Shujing Lu, Yue Suen, Ching Y. Department of Computer Science and Technology East China Normal University Shanghai 200241 China ECNU-SRI Joint Lab. for Pattern Analysis and Intelligent System Shanghai Research Institute of China Post Group Shanghai 200062 China Centre for Pattern Recognition and Machine Intelligence Concordia University Montreal QC H3G 1M8 Canada
Mail sorting machines play an important role in postal automation. In this paper, we give a brief overview of mail sorting machines in China Post from a pattern recognition point of view. OCR techniques such as postco... 详细信息
来源: 评论
A Survey of Historical Document Image Datasets
arXiv
收藏 引用
arXiv 2022年
作者: Nikolaidou, Konstantina Seuret, Mathias Mokayed, Hamam Liwicki, Marcus EISLAB Machine Learning Group Luleå University of Technology Aurorum 1 Norrbotten Luleå97187 Sweden Pattern Recognition Lab Computer Vision Group Friedrich-Alexander-Universität Martensstr. 3 Bavaria Erlangen91058 Germany
This paper presents a systematic literature review of image datasets for document image analysis, focusing on historical documents, such as handwritten manuscripts and early prints. Finding appropriate datasets for hi... 详细信息
来源: 评论
Robust real-time tracking for visual surveillance
Eurasip Journal on Advances in Signal Processing
收藏 引用
Eurasip Journal on Advances in Signal Processing 2007年 2007卷
作者: Thirde, David Borg, Mark Aguilera, Josep Wildenauer, Horst Ferryman, James Kampel, Martin School of Systems Engineering Computational Vision Group University of Reading Reading RG6 6AY United Kingdom Computer Science Department Pattern Recognition and Image Processing Group Vienna University of Technology Vienna 1040 Austria
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve track... 详细信息
来源: 评论
Active Feature Models
Active Feature Models
收藏 引用
International Conference on pattern recognition
作者: G. Langs P. Peloschek R. Donner M. Reiter H. Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Pattern Recognition and Image Processing Group University of Technology Vienna Austria Department of Radiology Medical University of Vienna Austria
In this paper active feature models are proposed. They utilize local texture features and a statistical shape model for the reliable localization of landmarks in images. They are related to active appearance models, b... 详细信息
来源: 评论
On Moving Object Segmentation from Monocular Video with Transformers
On Moving Object Segmentation from Monocular Video with Tran...
收藏 引用
International Conference on computer vision Workshops (ICCV Workshops)
作者: Christian Homeyer Christoph Schnörr Robert Bosch GmbH Corporate Research Computer Vision Lab Hildesheim Germany Image and Pattern Analysis Group Heidelberg University Germany Image and Pattern Analysis Group Heidelberg University Germany
Moving object detection and segmentation from a single moving camera is a challenging task, requiring an understanding of recognition, motion and 3D geometry. Combining both recognition and reconstruction boils down t...
来源: 评论
RankSRGAN: Super resolution generative adversarial networks with learning to rank
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Lab Shanghai China
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论