咨询与建议

限定检索结果

文献类型

  • 205 篇 会议
  • 123 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 59 篇 信息与通信工程
    • 46 篇 光学工程
    • 46 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 21 篇 控制科学与工程
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 143 篇 理学
    • 67 篇 物理学
    • 63 篇 数学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 11 篇 化学
    • 6 篇 系统科学
  • 50 篇 管理学
    • 35 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 20 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 25 篇 computer vision
  • 20 篇 pattern recognit...
  • 18 篇 feature extracti...
  • 16 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 image reconstruc...
  • 12 篇 image edge detec...
  • 11 篇 semantics
  • 10 篇 image color anal...
  • 9 篇 image recognitio...
  • 9 篇 shape
  • 8 篇 face recognition
  • 8 篇 computer graphic...
  • 8 篇 image processing
  • 8 篇 training
  • 7 篇 hidden markov mo...
  • 7 篇 generative adver...
  • 6 篇 support vector m...
  • 6 篇 three-dimensiona...
  • 6 篇 lighting

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 33 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 7 篇 pattern recognit...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 institute for co...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 26 篇 yu qiao
  • 26 篇 dong chao
  • 19 篇 pal umapada
  • 18 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 maier andreas
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 schnörr christop...
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...

语言

  • 325 篇 英文
  • 7 篇 其他
检索条件"机构=Pattern Recognition Lab Computer Vision Group"
332 条 记 录,以下是151-160 订阅
排序:
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
RankSRGAN: Generative Adversarial Networks With Ranker for Image Super-Resolution
RankSRGAN: Generative Adversarial Networks With Ranker for I...
收藏 引用
International Conference on computer vision (ICCV)
作者: Wenlong Zhang Yihao Liu Chao Dong Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
Neighbourhood-guided feature reconstruction for occluded person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Chen, Dapeng Zhao, Rui Chen, Haobin Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China
Person images captured by surveillance cameras are often occluded by various obstacles, which lead to defective feature representation and harm person re-identification (Re-ID) performance. To tackle this challenge, w... 详细信息
来源: 评论
Modulating image restoration with continual levels via adaptive feature modification layers
arXiv
收藏 引用
arXiv 2019年
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong
In image restoration tasks, like denoising and superresolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image ... 详细信息
来源: 评论
Box-driven Class-wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation
Box-driven Class-wise Region Masking and Filling Rate Guided...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition
作者: Chunfeng Song Yan Huang Wanli Ouyang Liang Wang Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) Institute of Automation Chinese Academy of Sciences (CASIA) The University of Sydney SenseTime Computer Vision Research Group
Semantic segmentation has achieved huge progress via adopting deep Fully Convolutional Networks (FCN). However, the performance of FCN based models severely rely on the amounts of pixel-level annotations which are exp... 详细信息
来源: 评论
Predicting the pathogenicity of protein coding mutations using Natural Language Processing
Predicting the pathogenicity of protein coding mutations usi...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Naeem Rehmat Hammad Farooq Sanjay Kumar Sibt ul Hussain Hammad Naveed Computational Biology Research Lab (***) National University of Computer & Emerging Sciences Recognition Vision and Learning research group (ReVeaL) National University of Computer & Emerging Sciences
DNA-Sequencing of tumor cells has revealed thousands of genetic mutations. However, cancer is caused by only some of them. Identifying mutations that contribute to tumor growth from neutral ones is extremely challengi... 详细信息
来源: 评论
KV Inversion: KV Embeddings Learning for Text-Conditioned Real Image Action Editing
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Qin, Jin Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Text-conditioned image editing is a recently emerged and highly practical task, and its potential is immeasurable. However, most of the concurrent methods are unable to perform action editing, i.e. they can not produc... 详细信息
来源: 评论
Co-Clustering Image Features and Semantic Concepts
Co-Clustering Image Features and Semantic Concepts
收藏 引用
IEEE International Conference on Image Processing
作者: Manjeet Rege Ming Dong Farshad Fotouhi Department of Computer Science Machine Vision & Pattern Recognition Laboratory Wayne State University Detroit MI USA Database & Multimedia Systems Group Wayne State University Detroit MI USA
In this paper, we present a novel idea of co-clustering image features and semantic concepts. We accomplish this by modelling user feedback logs and low-level features using a bipartite graph. Our experiments demonstr... 详细信息
来源: 评论
Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Learning-based methods have attracted a lot of research attention and led to significant improvements in low-light image enhancement. However, most of them still suffer from two main problems: expensive computational ... 详细信息
来源: 评论
On Moving Object Segmentation from Monocular Video with Transformers
arXiv
收藏 引用
arXiv 2024年
作者: Homeyer, Christian Schnörr, Christoph Robert Bosch GmbH Corporate Research Computer Vision Lab Hildesheim Germany Image and Pattern Analysis Group Heidelberg University Germany
Moving object detection and segmentation from a single moving camera is a challenging task, requiring an understanding of recognition, motion and 3D geometry. Combining both recognition and reconstruction boils down t... 详细信息
来源: 评论