咨询与建议

限定检索结果

文献类型

  • 205 篇 会议
  • 123 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 59 篇 信息与通信工程
    • 46 篇 光学工程
    • 46 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 21 篇 控制科学与工程
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 143 篇 理学
    • 67 篇 物理学
    • 63 篇 数学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 11 篇 化学
    • 6 篇 系统科学
  • 50 篇 管理学
    • 35 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 20 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 25 篇 computer vision
  • 20 篇 pattern recognit...
  • 18 篇 feature extracti...
  • 16 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 image reconstruc...
  • 12 篇 image edge detec...
  • 11 篇 semantics
  • 10 篇 image color anal...
  • 9 篇 image recognitio...
  • 9 篇 shape
  • 8 篇 face recognition
  • 8 篇 computer graphic...
  • 8 篇 image processing
  • 8 篇 training
  • 7 篇 hidden markov mo...
  • 7 篇 generative adver...
  • 6 篇 support vector m...
  • 6 篇 three-dimensiona...
  • 6 篇 lighting

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 33 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 7 篇 pattern recognit...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 institute for co...
  • 6 篇 university of ma...

作者

  • 58 篇 qiao yu
  • 26 篇 yu qiao
  • 25 篇 dong chao
  • 18 篇 umapada pal
  • 18 篇 pal umapada
  • 17 篇 wang yali
  • 16 篇 maier andreas
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 16 篇 lu tong
  • 14 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 schnörr christop...
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...

语言

  • 325 篇 英文
  • 7 篇 其他
检索条件"机构=Pattern Recognition Lab Computer Vision Group"
332 条 记 录,以下是11-20 订阅
排序:
Blind Image Inpainting via Omni-dimensional Gated Attention and Wavelet Queries
Blind Image Inpainting via Omni-dimensional Gated Attention ...
收藏 引用
2023 IEEE/CVF Conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Phutke, Shruti S. Kulkarni, Ashutosh Vipparthi, Santosh Kumar Murala, Subrahmanyam Indian Institute of Technology Ropar Computer Vision and Pattern Recognition Lab Punjab Rupnagar India
Blind image inpainting is a crucial restoration task that does not demand additional mask information to restore the corrupted regions. Yet, it is a very less explored research area due to the difficulty in discrimina... 详细信息
来源: 评论
Revisiting the Generalization Problem of Low-level vision Models Through the Lens of Image Deraining
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Jinfan You, Zhiyuan Gu, Jinjin Zhu, Kaiwen Xue, Tianfan Dong, Chao Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China The Chinese University of Hong Kong 999077 Hong Kong The University of Sydney NSW2006 Australia Shanghai Jiao Tong University Shanghai200240 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shenzhen University of Advanced Technology Shenzhen518055 China
Generalization remains a significant challenge for low-level vision models, which often struggle with unseen degradations in real-world scenarios despite their success in controlled benchmarks. In this paper, we revis... 详细信息
来源: 评论
Convex relaxations for binary image partitioning and perceptual grouping  23rd
收藏 引用
23rd German Association for pattern recognition Symposium, DAGM 2001
作者: Keuchel, Jens Schellewald, Christian Cremers, Daniel Schnörr, Christoph Computer Vision Graphics and Pattern Recognition Group Department of Mathematics and Computer Science University of Mannheim MannheimD-68131 Germany
We consider approaches to computer vision problems which require the minimization of a global energy functional over binary variables and take into account both local similarity and spatial context. The combinatorial ... 详细信息
来源: 评论
Motion competition: Variational integration of motion segmentation and shape regularization
Motion competition: Variational integration of motion segmen...
收藏 引用
24th German Association for pattern recognition Symposium, DAGM 2002
作者: Cremers, Daniel Schnörr, Christoph Computer Vision Graphics and Pattern Recognition Group Department of Mathematics and Computer Science University of Mannheim MannheimD–68131 Germany
We present a variational method for the segmentation of piecewise affine flow fields. Compared to other approaches to motion segmentation, we minimize a single energy functional both with respect to the affine motion ... 详细信息
来源: 评论
On-ine variational estimation of dynamical fluid flows with physics-based spatio-temporal regularization
收藏 引用
28th Symposium of the German Association for pattern recognition, DAGM 2006
作者: Ruhnau, Paul Stahl, Annette Schnörr, Christoph Computer Vision Graphics and Pattern Recognition Group Department of Mathematics and Computer Science University of Mannheim D-68131 Mannheim Germany
We present a variational approach to motion estimation of instationary fluid flows. Our approach extends prior work along two directions;(i) The full incompressible Navier-Stokes equation is employed in order to obtai... 详细信息
来源: 评论
TSNet: Deep Network for Human Action recognition in Hazy Videos
TSNet: Deep Network for Human Action Recognition in Hazy Vid...
收藏 引用
2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
作者: Chaudhary, Sachin Murala, Subrahmanyam Computer Vision and Pattern Recognition Lab Depatment of Electrical Engineering Indian Institute of Technology Ropar India
The all-weather intelligent surveillance system is the prime challenge for computer vision researchers. The surveillance is mostly done to analyze the human activity in a particular region. Several extreme weather con... 详细信息
来源: 评论
Novel human computer interaction principles for cardiac feedback using google glass and Android wear  12
Novel human computer interaction principles for cardiac feed...
收藏 引用
12th IEEE International Conference on Wearable and Implantable Body Sensor Networks, BSN 2015
作者: Richer, Robert Maiwald, Tim Pasluosta, Cristian Hensel, Bernhard Eskofier, Bjoern M. Digital Sports Group Pattern Recognition Lab Department of Computer Science Germany Erlangen Germany
This work presents a system for unobtrusive cardiac feedback in daily life. It addresses the whole pipeline from data acquisition over data processing to data visualization including wearable integration. ECG signals ... 详细信息
来源: 评论
Evaluation of convex optimization techniques for the weighted graph-matching problem in computer vision
收藏 引用
23rd German Association for pattern recognition Symposium, DAGM 2001
作者: Schellewald, Christian Roth, Stefan Schnörr, Christoph Computer Vision Graphics and Pattern Recognition Group Dept Mathematics and Computer Science University of Mannheim MannheimD-68131 Germany
We present a novel approach to the weighted graph-matching problem in computer vision, based on a convex relaxation of the underlying combinatorial optimization problem. The approach always computes a lower bound of t... 详细信息
来源: 评论
Classification of daily life activities by decision level fusion of inertial sensor data  13
Classification of daily life activities by decision level fu...
收藏 引用
8th International Conference on Body Area Networks, BODYNETS 2013
作者: Schuldhaus, Dominik Leutheuser, Heike Eskofier, Bjoern M. Department of Computer Science Pattern Recognition Lab Digital Sports Group University Erlangen-Nuremberg Germany
The fusion of inertial sensor data is heavily used for the classification of daily life activities. The knowledge about the performed daily life activities is mandatory to give physically inactive people feedback abou... 详细信息
来源: 评论
Human-focused computer vision applications
Human-focused computer vision applications
收藏 引用
International Conference on computer Graphics, Imaging and Visualisation, CGIV'06
作者: Piccardi, Massimo Department of Computer Systems Faculty of IT University of Technology Sydney Australia UTS Computer Vision Research Group IEEE IEEE Computer Society International Association for Pattern Recognition
Recent years have seen an increasing number of computer vision applications focusing on humans as their objects of interest. Such applications include video surveillance, domotics, multimedia semantic annotation and i... 详细信息
来源: 评论