咨询与建议

限定检索结果

文献类型

  • 205 篇 会议
  • 123 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 141 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 59 篇 信息与通信工程
    • 46 篇 光学工程
    • 46 篇 生物工程
    • 31 篇 生物医学工程(可授...
    • 25 篇 机械工程
    • 21 篇 控制科学与工程
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 143 篇 理学
    • 67 篇 物理学
    • 63 篇 数学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 11 篇 化学
    • 6 篇 系统科学
  • 50 篇 管理学
    • 35 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 20 篇 医学
    • 15 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 农学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 25 篇 computer vision
  • 20 篇 pattern recognit...
  • 18 篇 feature extracti...
  • 16 篇 image segmentati...
  • 15 篇 convolution
  • 13 篇 image reconstruc...
  • 12 篇 image edge detec...
  • 11 篇 semantics
  • 10 篇 image color anal...
  • 9 篇 image recognitio...
  • 9 篇 shape
  • 8 篇 face recognition
  • 8 篇 computer graphic...
  • 8 篇 image processing
  • 8 篇 training
  • 7 篇 hidden markov mo...
  • 7 篇 generative adver...
  • 6 篇 support vector m...
  • 6 篇 three-dimensiona...
  • 6 篇 lighting

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 33 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 7 篇 pattern recognit...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 institute for co...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 26 篇 yu qiao
  • 26 篇 dong chao
  • 19 篇 pal umapada
  • 18 篇 umapada pal
  • 17 篇 wang yali
  • 17 篇 lu tong
  • 16 篇 maier andreas
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 schnörr christop...
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...

语言

  • 325 篇 英文
  • 7 篇 其他
检索条件"机构=Pattern Recognition Lab Computer Vision Group"
332 条 记 录,以下是71-80 订阅
排序:
RBF-Softmax: Learning Deep Representative Prototypes with Radial Basis Function Softmax  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Zhang, Xiao Zhao, Rui Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Lab The Chinese University of Hong Kong Hong Kong SenseTime Research Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Deep neural networks have achieved remarkable successes in learning feature representations for visual classification. However, deep features learned by the softmax cross-entropy loss generally show excessive intra-cl... 详细信息
来源: 评论
Automatic recognition of Parkinson's Disease Using Surface Electromyography During Standardized Gait Tests
Automatic Recognition of Parkinson's Disease Using Surface E...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
作者: Patrick Kugler Christian Jaremenko Johannes Schlachetzki Juergen Winkler Jochen Klucken Bjoern Eskofier Digital Sports Group Pattern Recognition Lab Computer Science Department Friedrich-Alexander
Diagnosis and severity staging of Parkinsons disease (PD) relies mainly on subjective clinical examination. To better monitor disease progression and therapy success in PD patients, new objective and rater independent... 详细信息
来源: 评论
Facial landmark localization based on hierarchical pose regression with cascaded random ferns  13
Facial landmark localization based on hierarchical pose regr...
收藏 引用
21st ACM International Conference on Multimedia, MM 2013
作者: Zhang, Zhanpeng Zhang, Wei Liu, Jianzhuang Tang, Xiaoou Shenzhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology China Department of Information Engineering Chinese University of Hong Kong Hong Kong Media Lab Huawei Technologies Co. Ltd. China
The main challenge of facial landmark localization in realworld application is that the large changes of head pose and facial expressions cause substantial image appearance variations. To avoid high dimensional regres... 详细信息
来源: 评论
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
Multi-feature canonical correlation analysis for face photo-sketch image retrieval  13
Multi-feature canonical correlation analysis for face photo-...
收藏 引用
21st ACM International Conference on Multimedia, MM 2013
作者: Gong, Dihong Li, Zhifeng Liu, Jianzhuang Qiao, Yu Shenzhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology China Media Lab Huawei Technologies Co. Ltd. China Department of Information Engineering Chinese University of Hong Kong Hong Kong
Automatic face photo-sketch image retrieval has attracted great attention in recent years due to its important applications in real life. The major difficulty in automatic face photo-sketch image retrieval lies in the... 详细信息
来源: 评论
Fast single image dehazing through Edge-Guided Interpolated Filter
Fast single image dehazing through Edge-Guided Interpolated ...
收藏 引用
IAPR International Conference on Machine vision Applications (MVA)
作者: Ximei Zhu Ying Li Yu Qiao Shenzhen Key lab of Computer Vision Pattern Recognition The Chinese University of Hong Kong Hong Kong SAR
Images and videos taken in foggy weather often suffer from low visibility. Recent studies demonstrate the effectiveness of dark channel prior [3] and guided filter [4] based approaches for image dehazing. However, the... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
Communication via eye blinks and eyebrow raises: Video-based human-computer interfaces
收藏 引用
Universal Access in the Information Society 2003年 第4期2卷 359-373页
作者: Grauman, K. Betke, M. Lombardi, J. Gips, J. Bradski, G.R. Vision Interface Group AI Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue CambridgeMA02139 United States Computer Science Department Boston University 111 Cummington St BostonMA02215 United States EagleEyes Computer Science Department Boston College Fulton Hall Chestnut HillMA02467 United States Vision Graphics and Pattern Recognition Microcomputer Research Laboratory Intel Corporation SC12-303 2200 Mission College Blvd Santa ClaraCA95054-1537 United States
Two video-based human-computer interaction tools are introduced that can activate a binary switch and issue a selection command. "BlinkLink," as the first tool is called, automatically detects a user's e... 详细信息
来源: 评论
An adaptable inertial sensor fusion-based approach for energy expenditure estimation  15
收藏 引用
15th International Conference on Biomedical Engineering, ICBME 2013
作者: Schuldhaus, D. Dorn, S. Leutheuser, H. Tallner, A. Klucken, J. Eskofier, B.M. Digital Sports Group Pattern Recognition Lab Department of Computer Science University Erlangen-Nuremberg Germany Institute of Sport Science and Sport University Erlangen-Nuremberg Germany Department of Molecular Neurology University Hospital Erlangen Germany
Using multiple inertial sensors for energy expenditure estimation provides a useful tool for the assessment of daily life activities. Due to the high variety of new upcoming sensor types and recommendations for sensor... 详细信息
来源: 评论