咨询与建议

限定检索结果

文献类型

  • 151 篇 期刊文献
  • 144 篇 会议
  • 10 册 图书

馆藏范围

  • 305 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 194 篇 工学
    • 130 篇 计算机科学与技术...
    • 110 篇 软件工程
    • 43 篇 信息与通信工程
    • 41 篇 光学工程
    • 40 篇 生物医学工程(可授...
    • 27 篇 控制科学与工程
    • 27 篇 生物工程
    • 23 篇 电气工程
    • 17 篇 机械工程
    • 16 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 4 篇 冶金工程
    • 3 篇 环境科学与工程(可...
  • 132 篇 理学
    • 60 篇 数学
    • 43 篇 物理学
    • 34 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 系统科学
  • 54 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 26 篇 医学
    • 23 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 6 篇 农学
  • 4 篇 教育学
    • 3 篇 教育学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 艺术学
  • 2 篇 法学
  • 1 篇 文学

主题

  • 18 篇 pattern recognit...
  • 11 篇 image segmentati...
  • 11 篇 machine learning
  • 9 篇 face recognition
  • 8 篇 support vector m...
  • 8 篇 feature extracti...
  • 8 篇 artificial intel...
  • 7 篇 semantics
  • 7 篇 kernel
  • 7 篇 computer vision
  • 7 篇 image processing...
  • 7 篇 training
  • 6 篇 robustness
  • 5 篇 object detection
  • 5 篇 signal processin...
  • 5 篇 image edge detec...
  • 5 篇 lighting
  • 5 篇 visualization
  • 5 篇 image processing
  • 5 篇 health informati...

机构

  • 34 篇 national laborat...
  • 10 篇 university of ch...
  • 8 篇 hubei key labora...
  • 7 篇 department of in...
  • 7 篇 school of comput...
  • 6 篇 shenzhen key lab...
  • 6 篇 department of el...
  • 5 篇 pattern recognit...
  • 5 篇 institute of aut...
  • 5 篇 pattern recognit...
  • 5 篇 department of au...
  • 4 篇 institute of ima...
  • 4 篇 university key l...
  • 4 篇 department of qu...
  • 4 篇 school of comput...
  • 4 篇 school of intera...
  • 4 篇 pattern recognit...
  • 4 篇 microsoft resear...
  • 4 篇 department of co...
  • 4 篇 department of co...

作者

  • 8 篇 maier andreas
  • 8 篇 yang yang
  • 7 篇 li stan z.
  • 7 篇 fujimoto james g...
  • 6 篇 eerola tuomas
  • 6 篇 robi polikar
  • 6 篇 kälviäinen heikk...
  • 6 篇 gong chen
  • 5 篇 maier andreas k.
  • 5 篇 tzovaras dimitri...
  • 5 篇 bing wang
  • 5 篇 nepovinnykh ekat...
  • 5 篇 liu jianzhuang
  • 4 篇 yasuyuki matsush...
  • 4 篇 li xiaoling
  • 4 篇 wu xiaojun
  • 4 篇 wang da-han
  • 4 篇 james m. rehg
  • 4 篇 fang wei
  • 4 篇 chen hao

语言

  • 271 篇 英文
  • 32 篇 其他
  • 2 篇 中文
检索条件"机构=Pattern Recognition Laboratory Department of Computer Engineering and Informatics"
305 条 记 录,以下是141-150 订阅
Learning from learning machines: A new generation of AI technology to meet the needs of science
arXiv
收藏 引用
arXiv 2021年
作者: Pion-Tonachini, Luca Bouchard, Kristofer Martin, Hector Garcia Peisert, Sean Holtz, W. Bradley Aswani, Anil Dwivedi, Dipankar Wainwright, Haruko Pilania, Ghanshyam Nachman, Benjamin Marrone, Babetta L. Falco, Nicola Prabhat Arnold, Daniel Wolf-Yadlin, Alejandro Powers, Sarah Climer, Sharlee Jackson, Quinn Carlson, Ty Sohn, Michael Zwart, Petrus Kumar, Neeraj Justice, Amy Tomlin, Claire Jacobson, Daniel Micklem, Gos Gkoutos, Georgios V. Bickel, Peter J. Cazier, Jean-Baptiste Müller, Juliane Webb-Robertson, Bobbie-Jo Stevens, Rick Anderson, Mark Kreutz-Delgado, Ken Mahoney, Michael W. Brown, James B. Pattern Computer Inc. Friday HarborWA98250 United States Biosciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computational Research Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Helen Wils Neuroscience Institute Redwood Center for Theoretical Neuroscience Uc Berkeley BerkeleyCA94720 United States Doe Agile BioFoundry Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Joint BioEnergy Institute Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Bcam Basque Center for Applied Mathematics Bilbao48009 Spain Computer Science University of California Davis DavisCA95616 United States Cenic La MiradaCA90638 United States Health Informatics University of California Davis School of Medicine SacramentoCA95817 United States Berkeley Institute for Data Science University of California Berkeley BerkeleyCA94720 United States Industrial Engineering and Operations Research University of California Berkeley BerkeleyCA94720 United States Environmental & Earth Sciences Area Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Nuclear Engineering University of California Berkeley BerkeleyCA94720 United States Materials Science and Technology Division Los Alamos National Laboratory Los AlamosNM87545 United States Physics Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Bioscience Division Los Alamos National Laboratory Los AlamosNM87545 United States Earth and Environmental Sciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Energy Technologies Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computing and Computational Sciences Oak Ridge National Laboratory Oak RidgeTN37831 United States Industrial & Systems Engineering The University of Tennessee KnoxvilleTN37996 United States Department of Computer Science University of Missouri-Saint Louis St. LouisMO63121 United
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patte... 详细信息
来源: 评论
ICLabel: An automated electroencephalographic independent component classifier, dataset, and website
arXiv
收藏 引用
arXiv 2019年
作者: Pion-Tonachini, Luca Kreutz-Delgado, Ken Makeig, Scott Swartz Center for Computational Neuroscience University of California San Diego 9500 Gilman Drive La Jolla CA92093 United States Department of Electrical and Computer Engineering University of California San Diego 9500 Gilman Drive La Jolla CA92093 United States Pattern Recognition Laboratory University of California San Diego 9500 Gilman Drive La Jolla CA92093 United States
The electroencephalogram (EEG) provides a non-invasive, minimally restrictive, and relatively low-cost measure of mesoscale brain dynamics with high temporal resolution. Although signals recorded in parallel by multip... 详细信息
来源: 评论
Correction to: Diagnosis of schizophrenia with functional connectome data: a graph-based convolutional neural network approach
收藏 引用
BMC neuroscience 2022年 第1期23卷 14页
作者: Kang-Han Oh Il-Seok Oh Uyanga Tsogt Jie Shen Woo-Sung Kim Congcong Liu Nam-In Kang Keon-Hak Lee Jing Sui Sung-Wan Kim Young-Chul Chung Department of Computer and Software Engineering Wonkwang University Iksan 54538 Korea. Department of Computer Science and Engineering Jeonbuk National University Jeonju Korea. Department of Psychiatry Jeonbuk National University Medical School Geonjiro 20 Jeonju Korea. Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeon- buk National University Hospital Jeonju Korea. Department of Psychiatry Maeumsarang Hospital Wanju Jeollabuk-do Korea. Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing 100190 China. University of Chinese Academy of Sciences CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Beijing 100049 China. Department of Psychiatry Chonnam National University Medical School Gwangju Republic of Korea. Department of Psychiatry Jeonbuk National University Medical School Geonjiro 20 Jeonju Korea. chungyc@jbnu.ac.kr. Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeon- buk National University Hospital Jeonju Korea. chungyc@jbnu.ac.kr.
来源: 评论
Advances in Automated Fetal Brain MRI Segmentation and Biometry: Insights from the FeTA 2024 Challenge
arXiv
收藏 引用
arXiv 2025年
作者: Zalevskyi, Vladyslav Sanchez, Thomas Kaandorp, Misha Roulet, Margaux Fajardo-Rojas, Diego Li, Liu Hutter, Jana Li, Hongwei Bran Barkovich, Matthew Ji, Hui Wilhelmi, Luca Dändliker, Aline Steger, Céline Koob, Mériam Gomez, Yvan Jakovčić, Anton Klaić, Melita Adžić, Ana Marković, Pavel Grabarić, Gracia Rados, Milan Verdera, Jordina Aviles Kasprian, Gregor Dovjak, Gregor Gaubert-Rachmühl, Raphael Aschwanden, Maurice Zeng, Qi Karimi, Davood Peruzzo, Denis Ciceri, Tommaso Longari, Giorgio Hamadache, Rachika E. Bouzid, Amina Lladó, Xavier Chiarella, Simone Martí-Juan, Gerard Ballester, Miguel Ángel González Castellaro, Marco Pinamonti, Marco Visani, Valentina Cremese, Robin Sam, Keïn Gaudfernau, Fleur Ahir, Param Parikh, Mehul Zenk, Maximilian Baumgartner, Michael Maier-Hein, Klaus Tianhong, Li Hong, Yang Longfei, Zhao Preloznik, Domen Špiclin, Žiga Choi, Jae Won Li, Muyang Fu, Jia Wang, Guotai Jiang, Jingwen Tong, Lyuyang Du, Bo Gondova, Andrea You, Sungmin Im, Kiho Qayyum, Abdul Mazher, Moona Niederer, Steven A. Jakab, Andras Licandro, Roxane Payette, Kelly Cuadra, Meritxell Bach Department of Radiology Lausanne University Hospital University of Lausanne Lausanne Switzerland CIBM Center for Biomedical Imaging Lausanne Switzerland Department of Early Life Imaging School of Biomedical Engineering & Imaging Sciences King’s College London London United Kingdom Smart Imaging Lab University Hospital Erlangen Erlangen Germany Center for MR-Research University Children’s Hospital Zurich University of Zurich Zurich Switzerland Neuroscience Center Zurich University of Zurich Zurich Switzerland National Heart & Lung Institute Imperial College London London United Kingdom University of California San Francisco UCSF Benioff Children’s Hospital San FranciscoCA United States Department of Quantitative Biomedicine University of Zurich Zurich Switzerland Department of Informatics Technical University of Munich Munich Germany Boston Children’s Hospital Harvard Medical School BostonMA United States Neuroimaging Unit Scientific Institute IRCCS E. Medea Bosisio Parini Italy Department of Informatics Systems and Communication University of Milano Bicocca Milan Italy Universitat de Girona Girona Spain Università di Bologna Bologna Italy BCN MedTech Department of Engineering Universitat Pompeu Fabra Barcelona Spain Department of Information Engineering University of Padova Padova Italy Institut Pasteur Université Paris Cité CNRS UMR 3571 Decision and Bayesian Computation Paris France Inria HeKA PariSantéCampus Paris France L. D. College of Engineering Gujarat India Medical Faculty Heidelberg Heidelberg University Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany Co. Ltd China Faculty of Electrical Engineering University of Ljubljana Ljubljana Slovenia Department of Radiology Seoul National University Hospital Seoul Korea Republic of School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China Chengdu China School of
Accurate segmentation and biometric analysis are essential for studying the developing fetal brain in utero. The Fetal Brain Tissue Annotation (FeTA) Challenge 2024 builds upon previous editions to further advance the... 详细信息
来源: 评论
Semi-supervised deep generative modelling of incomplete multi-modality emotional data
arXiv
收藏 引用
arXiv 2018年
作者: Du, Changde Du, Changying Wang, Hao Li, Jinpeng Zheng, Wei-Long Lu, Bao-Liang He, Huiguang Research Center for Brain-inspired Intelligence National Laboratory of Pattern Recognition CASIA University of CAS Beijing China 360 Search Lab Beijing China Department of Computer Science and Engineering SJTU Shanghai China Research Center for Brain-inspired Intelligence National Laboratory of Pattern Recognition CASIA Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences University of Chinese Academy of Sciences
There are threefold challenges in emotion recognition. First, it is difficult to recognize human’s emotional states only considering a single modality. Second, it is expensive to manually annotate the emotional data.... 详细信息
来源: 评论
J-Measure Based Pruning for Advancing Classification Performance of Information Entropy Based Rule Generation
J-Measure Based Pruning for Advancing Classification Perform...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Han Liu Mihaela Cocea Weili Ding School of Computer Science and Informatics Cardiff University Queen’s Buildings 5 The Parade Cardiff United Kingdom School of computing University of Portsmouth Buckingham Building Lion Terrace Portsmouth United Kingdom Laboratory of Pattern Recognition and Intelligent Systems Key Laboratory of Industrial Computer Control Engineering of Heibei Provience Yanshan University Qinghuangdao China
Learning of classification rules is a popular approach of machine learning, which can be achieved through two strategies, namely divide-and-conquer and separate-and-conquer. The former is aimed at generating rules in ... 详细信息
来源: 评论
Human motion correction and representation method from motion camera
收藏 引用
Journal of engineering 2017年 第1期1卷 370-375页
作者: Zhang, Hong-Bo Guo, Feng Zhang, Miaohui Lin, Ying Hsiao, Tsung-Chih Department of Computer Science and Technology Huaqiao University Xiamen China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen China School of Information Science and Engineering Xiamen University Xiamen China Institute of Energy Jiangxi Academy of Sciences Jiangxi Province China
Motion estimation is a basic issue for many computer vision tasks, such as human-computer interaction, motion objection detection and intelligent robot. In many practical scenes, the object movement goes with camera m... 详细信息
来源: 评论
Fiber orientation estimation guided by a deep network  1
收藏 引用
20th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2017
作者: Ye, Chuyang Prince, Jerry L. National Laboratory of Pattern Recognition & Brainnetome Center Institute of Automation Chinese Academy of Sciences Beijing China Department of Electrical and Computer Engineering Johns Hopkins University BaltimoreMD United States
Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brain’s white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for tract reconstructio... 详细信息
来源: 评论
Occupancy-driven facility management and building performance analysis
收藏 引用
International Journal of Sustainable Development and Planning 2017年 第7期12卷 1155-1167页
作者: Ioannidis, D. Zikos, S. Krinidis, S. Tryferidis, A. Tzovaras, D. Likothanassis, S. Centre for Research and Technology Hellas Information Technologies Institute Greece Pattern Recognition Laboratory Computer Engineering and Informatics University of Patras Greece
Accurate and automated real-Time building monitoring is a challenging task due to the large number of different parameters that are involved. This paper presents several aspects of a building monitoring and control sy... 详细信息
来源: 评论
Face alignment in full pose range: A 3D total solution
arXiv
收藏 引用
arXiv 2018年
作者: Zhu, Xiangyu Liu, Xiaoming Lei, Zhen Li, Stan Z. Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun Donglu Beijing100190 China Department of Computer Science and Engineering Michigan State University East LansingMI48824 United States
Face alignment, which fits a face model to an image and extracts the semantic meanings of facial pixels, has been an important topic in the computer vision community. However, most algorithms are designed for faces in... 详细信息
来源: 评论