咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 146 篇 会议
  • 10 册 图书

馆藏范围

  • 305 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 195 篇 工学
    • 132 篇 计算机科学与技术...
    • 107 篇 软件工程
    • 44 篇 信息与通信工程
    • 42 篇 光学工程
    • 41 篇 生物医学工程(可授...
    • 29 篇 控制科学与工程
    • 27 篇 生物工程
    • 22 篇 电气工程
    • 17 篇 机械工程
    • 16 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 4 篇 冶金工程
    • 3 篇 环境科学与工程(可...
    • 3 篇 安全科学与工程
  • 132 篇 理学
    • 59 篇 数学
    • 43 篇 物理学
    • 34 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 13 篇 化学
    • 9 篇 系统科学
  • 52 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 27 篇 医学
    • 24 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 农学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 法学
  • 1 篇 文学

主题

  • 18 篇 pattern recognit...
  • 10 篇 image segmentati...
  • 10 篇 machine learning
  • 9 篇 face recognition
  • 8 篇 support vector m...
  • 8 篇 feature extracti...
  • 8 篇 artificial intel...
  • 7 篇 semantics
  • 7 篇 kernel
  • 7 篇 computer vision
  • 7 篇 image processing...
  • 7 篇 training
  • 6 篇 optical tomograp...
  • 6 篇 robustness
  • 5 篇 object detection
  • 5 篇 signal processin...
  • 5 篇 image edge detec...
  • 5 篇 lighting
  • 5 篇 visualization
  • 5 篇 image processing

机构

  • 34 篇 national laborat...
  • 9 篇 university of ch...
  • 8 篇 hubei key labora...
  • 7 篇 department of in...
  • 7 篇 school of comput...
  • 6 篇 shenzhen key lab...
  • 6 篇 department of el...
  • 5 篇 pattern recognit...
  • 5 篇 institute of aut...
  • 5 篇 pattern recognit...
  • 5 篇 department of au...
  • 4 篇 institute of ima...
  • 4 篇 university key l...
  • 4 篇 school of comput...
  • 4 篇 school of intera...
  • 4 篇 pattern recognit...
  • 4 篇 pattern recognit...
  • 4 篇 microsoft resear...
  • 4 篇 department of co...
  • 4 篇 department of co...

作者

  • 9 篇 maier andreas
  • 9 篇 fujimoto james g...
  • 8 篇 yang yang
  • 7 篇 li stan z.
  • 6 篇 eerola tuomas
  • 6 篇 maier andreas k.
  • 6 篇 robi polikar
  • 6 篇 kälviäinen heikk...
  • 6 篇 gong chen
  • 5 篇 tzovaras dimitri...
  • 5 篇 bing wang
  • 5 篇 spiridon likotha...
  • 5 篇 nepovinnykh ekat...
  • 5 篇 liu jianzhuang
  • 4 篇 yasuyuki matsush...
  • 4 篇 waheed nadia k.
  • 4 篇 li xiaoling
  • 4 篇 wu xiaojun
  • 4 篇 li wenjie
  • 4 篇 james m. rehg

语言

  • 287 篇 英文
  • 16 篇 其他
  • 2 篇 中文
检索条件"机构=Pattern Recognition Laboratory Department of Computer Engineering and Informatics"
305 条 记 录,以下是151-160 订阅
排序:
QuaSI: Quantile sparse image prior for spatio-temporal denoising of retinal OCT data  1
收藏 引用
20th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2017
作者: Schirrmacher, Franziska Köhler, Thomas Husvogt, Lennart Fujimoto, James G. Hornegger, Joachim Maier, Andreas K. Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department of Electrical Engineering Computer Science and Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge United States
Optical coherence tomography (OCT) enables high-resolution and non-invasive 3D imaging of the human retina but is inherently impaired by speckle noise. This paper introduces a spatio-temporal denoising algorithm for O... 详细信息
来源: 评论
FWLBP: A scale invariant descriptor for texture classification
arXiv
收藏 引用
arXiv 2018年
作者: Roy, Swalpa Kumar Bhattacharya, Nilavra Chanda, Bhabatosh Chaudhuri, Bidyut B. Ghosh, Dipak Kumar Optical Character Recognition Laboratory Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India School of Information University of Texas AustinTX78712 United States Image Processing Laboratory Electronics and Communication Sciences Unit Indian Statistical Institute Kolkata700108 India Department of Electronics and Communication Engineering National Institute of Technology Rourkela Rourkela769008 India
In this paper we propose a novel texture descriptor called Fractal Weighted Local Binary pattern (FWLBP). The fractal dimension (FD) measure is relatively invariant to scale-changes, and presents a good correlation wi... 详细信息
来源: 评论
Correction to: Automatic identification of myopic maculopathy related imaging features in optic disc region via machine learning methods
收藏 引用
Journal of translational medicine 2021年 第1期19卷 203页
作者: Yuchen Du Qiuying Chen Ying Fan Jianfeng Zhu Jiangnan He Haidong Zou Dazhen Sun Bowen Xin David Feng Michael Fulham Xiuying Wang Lisheng Wang Xun Xu Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. National Clinical Research Center for Eye Diseases Shanghai 20080 China. Biomedical and Multimedia Information Technology Research Group School of Computer Science The University of Sydney Sydney NSW 2006 Australia. Department of Molecular Imaging Royal Prince Alfred Hospital and the University of Sydney Sydney Australia. Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. lswang@***. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. drxuxun@***. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. drxuxun@***. National Clinical Research Center for Eye Diseases Shanghai 20080 China. drxuxun@***.
An amendment to this paper has been published and can be accessed via the original article.
来源: 评论
Progressive Refinement Bilateral Filter
Progressive Refinement Bilateral Filter
收藏 引用
IEEE International Conference on Automation, Electronics and Electrical engineering (AUTEEE)
作者: Chanyi Lu Yong Zhao Lin Wang Guiying Zhang Fujian Feng Li Zhang College of Data Science and Information Engineering Guizhou Minzu University Guiyang China School of Electronic and Computer Engineering Shenzhen Graduate School of Peking University Shenzhen China Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang China Department of Medical Information Engineering Zunyi Medical University Zunyi China
In this paper, a coarse-to-fine framework for image noise removal is proposed. The bilateral filter is redefined by the manner of progressive refining to effectively eliminate noise, thus forming progressive refinemen... 详细信息
来源: 评论
Learning data-adaptive nonparametric kernels
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Huang, Xiaolin Gong, Chen Yang, Jie Li, Li Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Department of Automation Tsinghua University
Kernel methods have been extensively used in a variety of machine learning tasks such as classification, clustering, and dimensionality reduction. For complicated practical tasks, the traditional kernels, e.g., Gaussi... 详细信息
来源: 评论
computer Assistance: A New Gold Standard for the Mitotic Count?
收藏 引用
Journal of Comparative Pathology 2022年 191卷 8-8页
作者: C.A. Bertram M. Aubreville T.A. Donovan A. Bartel F. Wilm C. Marzahl C.A. Assenmacher K. Becker M. Bennett S. Corner B. Cossic D. Denk M. Dettwiler B. Garcia Gonzalez C. Gurtner A.K. Haverkamp A. Heier A. Lehmbecker R. Klopfleisch Institute of Pathology University of Veterinary Medicine Vienna Austria Institute of Veterinary Pathology Freie Universität Berlin Berlin Technische Hochschule Ingolstadt Ingolstadt Germany Department of Anatomic Pathology Animal Medical Center New York USA Institute for Veterinary Epidemiology and Biostatistics Freie Universität Berlin Berlin Pattern Recognition Lab Computer Sciences Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department of Pathobiology School of Veterinary Medicine University of Pennsylvania Philadelphia USA Department of Pathology University of Veterinary Medicine Hannover Hannover Germany Synlab’s VPG Histology Bristol UK Veterinary Diagnostic Laboratory Michigan State University Lansing USA Institute of Pathology Centre for Clinical Veterinary Medicine Ludwig Maximilians University Munich Germany Institute of Animal Pathology Vetsuisse Faculty University of Bern Bern Switzerland IDEXX Vet Med Labor GmbH Kornwestheim Germany pRED Pharmaceutical sciences BIOmics and Pathology Pathology Digital Pathology & Tissue Technologies Roche Pharmaceutical Research and Early Development (pRED) Basel Switzerland Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Pharmacology & Preclinical Development Idorsia Pharmaceuticals Ltd Switzerland College of Veterinary Medicine North Carolina State University Raleigh USA
来源: 评论
Epoxy-inspired nonlinear interface integrating monolayer transition-metal dichalcogenides with linear plasmonic nanosieves
arXiv
收藏 引用
arXiv 2019年
作者: Hong, Xuanmiao Hu, Guangwei Zhao, Wenchao Wang, Kai Sun, Shang Zhu, Rui Wu, Jing Liu, Weiwei Ping, Loh Kian Wee, Andrew Thye Shen Wang, Bing Alù, Andrea Qiu, Cheng-Wei Lu, Peixiang Wuhan National Laboratory for Optoelectronics and School of Physics Huazhong University of Science and Technology Wuhan430074 China Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore117583 Singapore Advanced Science Research Center City University of New York New York10031 United States 2 Fusionopolis Way Innovis #08-03 138634 Singapore Department of Physics National University of Singapore 2 Science Drive 3 Singapore117551 Singapore Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore17543 Singapore Centre for Advanced 2D Materials National University of Singapore Block S14 6 Science Drive 2 Singapore117546 Singapore Hubei Key Laboratory of Optical information and Pattern Recognition Wuhan Institute of Technology Wuhan430205 China
Although TMDC monolayers offer giant optical nonlinearity within few-angstrom thickness, it is still elusive to modulate and engineer the wavefront of nonlinear emissions. The grain size of high-quality monolayers als... 详细信息
来源: 评论
Deep crisp boundaries: From boundaries to higher-level tasks
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Yupei Zhao, Xin Li, Yin Huang, Kaiqi Center for Research on Intelligent System and Engineering Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Department of Biostatistics and Medical Informatics Department of Computer Sciences Univeristy of Wisconsin-Madison Center for Research on Intelligent System and Engineering National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China CAS Center for Excellence in Brain Science and Intelligence Technology 100190
Edge detection has made significant progress with the help of deep Convolutional Networks (ConvNet). These ConvNet based edge detectors have approached human level performance on standard benchmarks. We provide a syst... 详细信息
来源: 评论
Evaluation of MRI to ultrasound registration methods for brain shift correction: The CuRIOUS2018 Challenge
arXiv
收藏 引用
arXiv 2019年
作者: Xiao, Yiming Rivaz, Hassan Chabanas, Matthieu Fortin, Maryse Machado, Ines Ou, Yangming Heinrich, Mattias P. Schnabel, Julia A. Zhong, Xia Maier, Andreas Wein, Wolfgang Shams, Roozbeh Kadoury, Samuel Drobny, David Modat, Marc Reinertsen, Ingerid Robarts Research Institute Western University LondonON Canada PERFORM Centre Department of Electrical and Computer Engineering Concordia University Montreal Canada University of Grenoble Aples Grenoble Institute of Technology Grenoble France Department of Health Kinesiology & Applied Physiology Concordia University Montreal Canada Department of Radiology Brigham and Women’s Hospital Harvard Medical School BostonMA United States Department of Pediatrics and Radiology Boston Children’s Hospital Harvard Medical School BostonMA United States Institute of Medical Informatics University of Luebeck Germany School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstr. 3 Erlangen91058 Germany Institute of Biomedical Engineering Polytechnique Montreal CHUM Research Centre Wellcome/EPSRC Cenre for Interventional and Surgical Sciences University of College London United Kingdom School of Biomedical Engineering & Imaging Sciences King’s College London King’s Health Partners St Thomas’ Hospital LondonSE1 7EH United Kingdom ImFusion GmbH Munich Germany SINTEF TrondheimNO-7465 Norway
In brain tumor surgery, the quality and safety of the procedure can be impacted by intra-operative tissue deformation, called brain shift. Brain shift can move the surgical targets and other vital structures such as b... 详细信息
来源: 评论
Learning depth from single images with deep neural network embedding focal length
arXiv
收藏 引用
arXiv 2018年
作者: He, Lei Wang, Guanghui Hu, Zhanyi University of Chinese Academy of Sciences Beijing100049 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Beijing100190 China Department of Electrical Engineering and Computer Science University of Kansas LawrenceKS66045 United States
Learning depth from a single image, as an important issue in scene understanding, has attracted a lot of attention in the past decade. The accuracy of the depth estimation has been improved from conditional Markov ran... 详细信息
来源: 评论