Processing non-stationary data streams has gained a significant research interest in the recent years. Most of the current state-of-the-art approaches in the literature exhibit hybrid solutions based on an ensemble le...
详细信息
Processing non-stationary data streams has gained a significant research interest in the recent years. Most of the current state-of-the-art approaches in the literature exhibit hybrid solutions based on an ensemble le...
详细信息
ISBN:
(数字)9798331530631
ISBN:
(纸本)9798331530648
Processing non-stationary data streams has gained a significant research interest in the recent years. Most of the current state-of-the-art approaches in the literature exhibit hybrid solutions based on an ensemble learning paradigm, extending its parallel architecture with a drift detector. Such integrated mechanism of concept drift detection often relies on the metadescription of incoming data. The article presents a proposition of a novel hybrid classifier – the Metafeature Concept Selector. The method employs the analysis of statistical metafeatures calculated on subsequent data batches to identify the currently processed concept. The work is concluded with an extensive experimental analysis of synthetic data streams with recurrent concepts, various dimensionality and various concept change frequencies, showing that the proposed approach brings improvement when integrated with state-of-the-art base incremental learners.
One of the critical challenges for natural language processing methods is the issue of automatic content summarization. The enormous increase in the amount of data delivered to users by news services leads to an overl...
详细信息
Brain Tumours are highly complex, particularly when it comes to their initial and accurate diagnosis, as this determines patient prognosis. Conventional methods rely on MRI and CT scans and employ generic machine lear...
详细信息
Brain Tumours are highly complex, particularly when it comes to their initial and accurate diagnosis, as this determines patient prognosis. Conventional methods rely on MRI and CT scans and employ generic machine learning techniques, which are heavily dependent on feature extraction and require human intervention. These methods may fail in complex cases and do not produce human-interpretable results, making it difficult for clinicians to trust the model's predictions. Such limitations prolong the diagnostic process and can negatively impact the quality of treatment. The advent of deep learning has made it a powerful tool for complex image analysis tasks, such as detecting brain Tumours, by learning advanced patterns from images. However, deep learning models are often considered "black box" systems, where the reasoning behind predictions remains unclear. To address this issue, the present study applies Explainable AI (XAI) alongside deep learning for accurate and interpretable brain Tumour prediction. XAI enhances model interpretability by identifying key features such as Tumour size, location, and texture, which are crucial for clinicians. This helps build their confidence in the model and enables them to make better-informed decisions. In this research, a deep learning model integrated with XAI is proposed to develop an interpretable framework for brain Tumour prediction. The model is trained on an extensive dataset comprising imaging and clinical data and demonstrates high AUC while leveraging XAI for model explainability and feature selection. The study findings indicate that this approach improves predictive performance, achieving an accuracy of 92.98% and a miss rate of 7.02%. Additionally, interpretability tools such as LIME and Grad-CAM provide clinicians with a clearer understanding of the decision-making process, supporting diagnosis and treatment. This model represents a significant advancement in brain Tumour prediction, with the potential to enhance pat
作者:
KING, JFBARTON, DEJ. Fred King:is the manager of the Advanced Technology Department for Unisys in Reston
Virginia. He earned his Ph.D. in mathematics from the University of Houston in 1977. He has been principal investigator of research projects in knowledge engineering pattern recognition and heuristic problem-solving. Efforts include the development of a multi-temporal multispectral classifier for identifying graincrops using LANDSAT satellite imagery data for NASA. Also as a member of the research team for a NCI study with Baylor College of Medicine and NASA he helped develop techniques for detection of carcinoma using multispectral microphotometer scans of lung tissue. He established and became technical director of the AI Laboratory for Ford Aerospace where he developed expert scheduling modeling and knowledge acquisition systems for NASA. Since joining Unisys in 1985 he has led the development of object-oriented programming environments blackboard architectures data fusion techniques using neural networks and intelligent data base systems. Douglas E. Barton:is manager of Logistics Information Systems for Unisys in Reston
Virginia. He earned his B.A. degree in computer science from the College of William and Mary in 1978 and did postgraduate work in London as a Drapers Company scholar. Since joining Unisys in 1981 his work has concentrated on program management and software engineering of large scale data base management systems and design and implementation of knowledge-based systems in planning and logistics. As chairman of the Logistics Data Subcommittee of the National Security Industrial Association (NSIA) he led an industry initiative which examined concepts in knowledge-based systems in military logistics. His responsibilities also include evaluation development and tailoring of software engineering standards and procedures for data base and knowledge-based systems. He is currently program manager of the Navigation Information Management System which provides support to the Fleet Ballistic Missile Progr
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several know...
详细信息
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several known alternatives need to be rapidly evaluated. A problem inherent in rapid prototyping is the lack of a "target system" with which to interface. Some alternatives are to develop test driver libraries, integrate the prototype with an existing working simulator, or build one for the specific problem. This paper presents a unique approach to concept development using rapid prototyping for concept development and scenario-based simulation for concept verification. The rapid prototyping environment, derived from artificial intelligence technology, is based on a blackboard architecture. The rapid prototype simulation capability is provided through an object-oriented modeling environment. It is shown how both simulation and blackboard technologies are used collectively to rapidly gain insight into a tenacious problem. A specific example will be discussed where this approach was used to evolve the logic of a mission controller for an autonomous underwater vehicle.
暂无评论