咨询与建议

限定检索结果

文献类型

  • 11 篇 会议
  • 10 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 15 篇 工学
    • 8 篇 计算机科学与技术...
    • 5 篇 软件工程
    • 5 篇 生物工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
  • 8 篇 理学
    • 5 篇 生物学
    • 4 篇 数学
    • 2 篇 化学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 管理学
    • 1 篇 公共管理

主题

  • 2 篇 indexes
  • 2 篇 computational li...
  • 2 篇 pattern recognit...
  • 2 篇 proteins
  • 2 篇 amino acids
  • 2 篇 accuracy
  • 1 篇 investment
  • 1 篇 complex networks
  • 1 篇 support vector m...
  • 1 篇 deep neural netw...
  • 1 篇 three-dimensiona...
  • 1 篇 automation
  • 1 篇 image segmentati...
  • 1 篇 microscopy
  • 1 篇 markov random fi...
  • 1 篇 planning
  • 1 篇 network topology
  • 1 篇 genes
  • 1 篇 cameras
  • 1 篇 breast cancer

机构

  • 3 篇 pattern recognit...
  • 3 篇 school of engine...
  • 2 篇 tsinghua univers...
  • 2 篇 department of ma...
  • 2 篇 pattern recognit...
  • 2 篇 gaoling school o...
  • 2 篇 state engineerin...
  • 2 篇 school of artifi...
  • 2 篇 beijing key labo...
  • 1 篇 computational fl...
  • 1 篇 university of co...
  • 1 篇 sanford burnham ...
  • 1 篇 department of ne...
  • 1 篇 department of cl...
  • 1 篇 department of bi...
  • 1 篇 department of ne...
  • 1 篇 section for anim...
  • 1 篇 pattern recognit...
  • 1 篇 intensive care v...
  • 1 篇 department of cl...

作者

  • 3 篇 dekhovich aleksa...
  • 3 篇 bessa miguel a.
  • 2 篇 sluiter marcel h...
  • 2 篇 zhou jie
  • 2 篇 li peng
  • 2 篇 tax david m.j.
  • 2 篇 hong-bin shen
  • 2 篇 shen hong-bin
  • 1 篇 van den tempel w...
  • 1 篇 wolfgang maier
  • 1 篇 wenhai chen
  • 1 篇 philip scheltens
  • 1 篇 lelieveldt boude...
  • 1 篇 kekeç taygun
  • 1 篇 dobin alexander
  • 1 篇 mccarroll steven...
  • 1 篇 van der geest ro...
  • 1 篇 jonas mengel-fro...
  • 1 篇 dong weixiu
  • 1 篇 torkelson amy

语言

  • 21 篇 英文
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Bioinformatics Laboratory"
22 条 记 录,以下是1-10 订阅
排序:
ROSE: Robust Selective Fine-tuning for Pre-trained Language Models
ROSE: Robust Selective Fine-tuning for Pre-trained Language ...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Jiang, Lan Zhou, Hao Lin, Yankai Li, Peng Zhou, Jie Jiang, Rui MOE Key Laboratory of Bioinformatics Center for Synthetic and Systems Biology Department of Automation BNRist Tsinghua University China Pattern Recognition Center WeChat AI Tencent Inc. China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Tsinghua University China
Even though the large-scale language models have achieved excellent performances, they suffer from various adversarial attacks. A large body of defense methods has been proposed. However, they are still limited due to... 详细信息
来源: 评论
iPINNs: Incremental learning for Physics-informed neural networks
arXiv
收藏 引用
arXiv 2023年
作者: Dekhovich, Aleksandr Sluiter, Marcel H.F. Tax, David M.J. Bessa, Miguel A. Department of Materials Science and Engineering Delft University of Technology Mekelweg 2 Delft2628 CD Netherlands Pattern Recognition and Bioinformatics Laboratory Delft University of Technology Van Mourik Broekmanweg 6 Delft2628 XE Netherlands School of Engineering Brown University 184 Hope St. ProvidenceRI02912 United States
Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations (PDEs). However, finding a set of neural network parameters that lead to fulfilling a PDE can be... 详细信息
来源: 评论
Cooperative data-driven modeling
arXiv
收藏 引用
arXiv 2022年
作者: Dekhovich, Aleksandr Turan, O. Taylan Yi, Jiaxiang Bessa, Miguel A. Department of Material Science and Engineering Delft University of Technology Mekelweg 2 Delft2628 CD Netherlands Pattern Recognition and Bioinformatics Laboratory Delft University of Technology Van Mourik Broekmanweg 6 Delft2628 XE Netherlands School of Engineering Brown University 184 Hope St. ProvidenceRI02912 United States
Data-driven modeling in mechanics is evolving rapidly based on recent machine learning advances, especially on artificial neural networks. As the field matures, new data and models created by different groups become a... 详细信息
来源: 评论
ROSE: Robust Selective Fine-tuning for Pre-trained Language Models
arXiv
收藏 引用
arXiv 2022年
作者: Jiang, Lan Zhou, Hao Lin, Yankai Li, Peng Zhou, Jie Jiang, Rui Ministry of Education Key Laboratory of Bioinformatics Center for Synthetic and Systems Biology Department of Automation BNRist Tsinghua University China Pattern Recognition Center WeChat AI Tencent Inc. China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Tsinghua University China
Even though the large-scale language models have achieved excellent performances, they suffer from various adversarial attacks. A large body of defense methods has been proposed. However, they are still limited due to... 详细信息
来源: 评论
Neural network relief: a pruning algorithm based on neural activity
arXiv
收藏 引用
arXiv 2021年
作者: Dekhovich, Aleksandr Tax, David M.J. Sluiter, Marcel H.F. Bessa, Miguel A. Department of Materials Science and Engineering Delft University of Technology Mekelweg 2 Delft2628 CD Netherlands Pattern Recognition and Bioinformatics Laboratory Delft University of Technology Van Mourik Broekmanweg 6 Delft2628 XE Netherlands School of Engineering Brown University 184 Hope St. ProvidenceRI02912 United States
Current deep neural networks (DNNs) are overparameterized and use most of their neuronal connections during inference for each task. The human brain, however, developed specialized regions for different tasks and perf... 详细信息
来源: 评论
Probabilistic Inference for Camera Calibration in Light Microscopy Under Circular Motion
Probabilistic Inference for Camera Calibration in Light Micr...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Yuanhao Guo Fons J. Verbeek Ge Yang Computational Biology and Machine Intelligence National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences LIACS Bioinformatics and Imaging Leiden University School of Artificial Intelligence University of Chinese Academy of Sciences
Robust and accurate camera calibration is essential for 3D reconstruction in light microscopy under circular motion. Conventional methods require either accurate key point matching or precise segmentation of the axial... 详细信息
来源: 评论
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM Image Processing
NiuEM: A Nested-iterative Unsupervised Learning Model for Si...
收藏 引用
2020 IEEE International Conference on bioinformatics and Biomedicine, BIBM 2020
作者: Hu, Rui Cai, Jiaming Zheng, Wangjie Yang, Yang Shen, Hong-Bin Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai200240 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Jiao Tong University Department of Bioinformatics and Biostatistics Shanghai200240 China
Cryo-electron microscopy (cryo-EM) has become a mainstream technology for solving spatial structures of biomacromolecules, while the processing of cryo-EM images is a very challenging task. One of the great challenges... 详细信息
来源: 评论
Probabilistic inference for camera calibration in light microscopy under circular motion
arXiv
收藏 引用
arXiv 2019年
作者: Guo, Yuanhao Verbeek, Fons J. Yang, Ge Computational Biology and Machine Intelligence Group National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Bioinformatics and Imaging LIACS Leiden University Leiden Netherlands
Robust and accurate camera calibration is essential for 3D reconstruction in light microscopy under circular motion. Conventional methods require either accurate key point matching or precise segmentation of the axial... 详细信息
来源: 评论
Comparative cellular analysis of motor cortex in human, marmoset and mouse (vol 598, pg 111, 2021)
收藏 引用
NATURE 2022年 第7904期604卷 E8-E8页
作者: Bakken, Trygve E. Jorstad, Nikolas L. Hu, Qiwen Lake, Blue B. Tian, Wei Kalmbach, Brian E. Crow, Megan Hodge, Rebecca D. Krienen, Fenna M. Sorensen, Staci A. Eggermont, Jeroen Yao, Zizhen Aevermann, Brian D. Aldridge, Andrew I. Bartlett, Anna Bertagnolli, Darren Casper, Tamara Castanon, Rosa G. Crichton, Kirsten Daigle, Tanya L. Dalley, Rachel Dee, Nick Dembrow, Nikolai Diep, Dinh Ding, Song-Lin Dong, Weixiu Fang, Rongxin Fischer, Stephan Goldman, Melissa Goldy, Jeff Graybuck, Lucas T. Herb, Brian R. Hou, Xiaomeng Kancherla, Jayaram Kroll, Matthew Lathia, Kanan van Lew, Baldur Li, Yang Eric Liu, Christine S. Liu, Hanqing Lucero, Jacinta D. Mahurkar, Anup McMillen, Delissa Miller, Jeremy A. Moussa, Marmar Nery, Joseph R. Nicovich, Philip R. Niu, Sheng-Yong Orvis, Joshua Osteen, Julia K. Owen, Scott Palmer, Carter R. Pham, Thanh Plongthongkum, Nongluk Poirion, Olivier Reed, Nora M. Rimorin, Christine Rivkin, Angeline Romanow, William J. Sedeno-Cortes, Adriana E. Siletti, Kimberly Somasundaram, Saroja Sulc, Josef Tieu, Michael Torkelson, Amy Tung, Herman Wang, Xinxin Xie, Fangming Yanny, Anna Marie Zhang, Renee Ament, Seth A. Behrens, M. Margarita Bravo, Hector Corrada Chun, Jerold Dobin, Alexander Gillis, Jesse Hertzano, Ronna Hof, Patrick R. Hollt, Thomas Horwitz, Gregory D. Keene, C. Dirk Kharchenko, Peter V. Ko, Andrew L. Lelieveldt, Boudewijn P. Luo, Chongyuan Mukamel, Eran A. Pinto-Duarte, Antonio Preiss, Sebastian Regev, Aviv Ren, Bing Scheuermann, Richard H. Smith, Kimberly Spain, William J. White, Owen R. Koch, Christof Hawrylycz, Michael Tasic, Bosiljka Macosko, Evan Z. McCarroll, Steven A. Ting, Jonathan T. Zeng, Hongkui Zhang, Kun Feng, Guoping Ecker, Joseph R. Linnarsson, Sten Lein, Ed S. Allen Institute for Brain Science Seattle WA USA Department of Physiology and Biophysics University of Washington Seattle WA USA Department of Biomedical Informatics Harvard Medical School Boston MA USA Department of Bioengineering University of California San Diego La Jolla CA USA The Salk Institute for Biological Studies La Jolla CA USA Epilepsy Center of Excellence Department of Veterans Affairs Medical Center Seattle WA USA Stanley Institute for Cognitive Genomics Cold Spring Harbor Laboratory Cold Spring Harbor NY USA Department of Genetics Harvard Medical School Boston MA USA Broad Institute of MIT and Harvard Cambridge MA USA LKEB Department of Radiology Leiden University Medical Center Leiden The Netherlands Pattern Recognition and Bioinformatics group Delft University of Technology Delft The Netherlands J. Craig Venter Institute La Jolla CA USA Department of Pathology University of California San Diego CA USA Division of Vaccine Discovery La Jolla Institute for Immunology La Jolla CA USA Genomic Analysis Laboratory The Salk Institute for Biological Studies La Jolla CA USA Computer Science and Engineering Program University of California San Diego La Jolla CA USA Howard Hughes Medical Institute The Salk Institute for Biological Studies La Jolla CA USA Bioinformatics and Systems Biology Graduate Program University of California San Diego La Jolla CA USA Institute for Genomes Sciences University of Maryland School of Medicine Baltimore MD USA Center for Epigenomics Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA Ludwig Institute for Cancer Research La Jolla CA USA Department of Computer Science University of Maryland College Park College Park MD USA Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA Biomedical Sciences Program School of Medicine University of California San Diego La Jolla CA USA University of Connecticut Storrs CT USA Department
来源: 评论
Markov Random Field for wind farm planning
Markov Random Field for wind farm planning
收藏 引用
IEEE International Conference on Smart Energy Grid Engineering (SEGE)
作者: Hale Cetinay Taygun Kekeç Fernando A. Kuipers D. M. J. Tax Network Architectures and Services Delft University of Technology Delft The Netherlands Pattern Recognition and Bioinformatics Laboratory Delft University of Technology Delft The Netherlands
Many countries aim to integrate a substantial amount of wind energy in the near future. This requires meticulous planning, which is challenging due to the uncertainty in wind profiles. In this paper, we propose a nove... 详细信息
来源: 评论