咨询与建议

限定检索结果

文献类型

  • 121 篇 会议
  • 30 篇 期刊文献

馆藏范围

  • 151 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 112 篇 工学
    • 79 篇 计算机科学与技术...
    • 73 篇 软件工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 信息与通信工程
    • 18 篇 生物工程
    • 13 篇 机械工程
    • 9 篇 控制科学与工程
    • 8 篇 安全科学与工程
    • 6 篇 仪器科学与技术
    • 6 篇 电子科学与技术(可...
    • 4 篇 光学工程
    • 4 篇 电气工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
  • 59 篇 理学
    • 45 篇 数学
    • 23 篇 统计学(可授理学、...
    • 16 篇 生物学
    • 7 篇 系统科学
    • 5 篇 物理学
    • 2 篇 化学
  • 34 篇 管理学
    • 23 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 艺术学

主题

  • 15 篇 data models
  • 9 篇 bayes methods
  • 8 篇 computational mo...
  • 8 篇 feature extracti...
  • 6 篇 predictive model...
  • 6 篇 autism
  • 6 篇 diseases
  • 6 篇 ubiquitous compu...
  • 5 篇 hospitals
  • 5 篇 media
  • 5 篇 blogs
  • 5 篇 machine learning
  • 5 篇 entropy
  • 4 篇 indexes
  • 4 篇 bluetooth
  • 4 篇 optimization
  • 4 篇 data mining
  • 4 篇 face
  • 4 篇 context
  • 4 篇 clustering algor...

机构

  • 36 篇 centre for patte...
  • 21 篇 centre for patte...
  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 5 篇 centre for patte...
  • 4 篇 pattern recognit...
  • 4 篇 department of el...
  • 4 篇 institute for mu...
  • 3 篇 pattern recognit...
  • 3 篇 institute for fr...
  • 3 篇 department of co...
  • 3 篇 centre for patte...
  • 3 篇 national key lab...
  • 2 篇 department of el...
  • 2 篇 centre for patte...
  • 2 篇 department of co...
  • 2 篇 monash universit...
  • 2 篇 centre of patter...
  • 2 篇 pattern recognit...

作者

  • 56 篇 venkatesh svetha
  • 53 篇 phung dinh
  • 34 篇 svetha venkatesh
  • 31 篇 dinh phung
  • 21 篇 nguyen tu dinh
  • 20 篇 tran truyen
  • 20 篇 rana santu
  • 16 篇 gupta sunil
  • 13 篇 le trung
  • 11 篇 sunil gupta
  • 10 篇 nguyen vu
  • 9 篇 santu rana
  • 8 篇 luo wei
  • 7 篇 vu nguyen
  • 6 篇 vu hung
  • 6 篇 nguyen thuong
  • 5 篇 li cheng
  • 5 篇 chandan karmakar
  • 5 篇 tu dinh nguyen
  • 5 篇 bo dao

语言

  • 149 篇 英文
  • 2 篇 其他
检索条件"机构=Pattern Recognition and Data Analytics"
151 条 记 录,以下是11-20 订阅
排序:
Graph Memory Networks for Molecular Activity Prediction  24
Graph Memory Networks for Molecular Activity Prediction
收藏 引用
24th International Conference on pattern recognition, ICPR 2018
作者: Pham, Trang Tran, Truyen Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia
Molecular activity prediction is critical in drug design. Machine learning techniques such as kernel methods and random forests have been successful for this task. These models require fixed-size feature vectors as in... 详细信息
来源: 评论
Resset: A Recurrent Model for Sequence of Sets with Applications to Electronic Medical Records
Resset: A Recurrent Model for Sequence of Sets with Applicat...
收藏 引用
2018 International Joint Conference on Neural Networks, IJCNN 2018
作者: Nguyen, Phuoc Tran, Truyen Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia
Modern healthcare is ripe for disruption by AI. A game changer would be automatic understanding the latent processes from electronic medical records, which are being collected for billions of people worldwide. However... 详细信息
来源: 评论
Algorithmic assurance: An Active Approach to Algorithmic Testing using Bayesian Optimisation  32
Algorithmic assurance: An Active Approach to Algorithmic Tes...
收藏 引用
32nd Conference on Neural Information Processing Systems, NeurIPS 2018
作者: Gopakumar, Shivapratap Gupta, Sunil Rana, Santu Nguyen, Vu Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia
We introduce algorithmic assurance, the problem of testing whether machine learning algorithms are conforming to their intended design goal. We address this problem by proposing an efficient framework for algorithmic ... 详细信息
来源: 评论
Learning graph representation via frequent subgraphs
Learning graph representation via frequent subgraphs
收藏 引用
2018 SIAM International Conference on data Mining, SDM 2018
作者: Nguyen, Dang Luo, Wei Nguyen, Tu Dinh Venkatesh, Svetha Phung, Dinh Deakin University Centre for Pattern Recognition and Data Analytics Geelong Australia
We propose a novel approach to learn distributed representation for graph data. Our idea is to combine a recently introduced neural document embedding model with a traditional pattern mining technique, by treating a g... 详细信息
来源: 评论
A privacy preserving bayesian optimization with high efficiency  22nd
A privacy preserving bayesian optimization with high efficie...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2018
作者: Nguyen, Thanh Dai Gupta, Sunil Rana, Santu Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Waurn Ponds3216 Australia
Bayesian optimization is a powerful machine learning technique for solving experimental design problems. With its use in industrial design optimization, time and cost of industrial processes can be reduced significant... 详细信息
来源: 评论
Trans2Vec: Learning transaction embedding via items and frequent itemsets  22nd
Trans2Vec: Learning transaction embedding via items and freq...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2018
作者: Nguyen, Dang Nguyen, Tu Dinh Luo, Wei Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia
Learning meaningful and effective representations for transaction data is a crucial prerequisite for transaction classification and clustering tasks. Traditional methods which use frequent itemsets (FIs) as features o... 详细信息
来源: 评论
A novel embedding model for knowledge base completion based on convolutional neural network
A novel embedding model for knowledge base completion based ...
收藏 引用
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2018
作者: Nguyen, Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Phung, Dinh Deakin University Geelong Australia Centre for Pattern Recognition and Data Analytics University of Melbourne Melbourne Australia
In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture glo... 详细信息
来源: 评论
Rigid and non-rigid motion compensation in weight-bearing cone-beam CT of the knee using (noisy) inertial measurements
arXiv
收藏 引用
arXiv 2021年
作者: Maier, Jennifer Nitschke, Marlies Choi, Jang-Hwan Gold, Garry Fahrig, Rebecca Eskofier, Bjoern M. Maier, Andreas Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Machine Learning and Data Analytics Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Division of Mechanical and Biomedical Engineering Ewha Womans University Seoul Korea Republic of Department of Radiology School of Medicine Stanford University StanfordCA United States Innovation Advanced Therapies Siemens Healthcare GmbH Forchheim Germany
Involuntary subject motion is the main source of artifacts in weight-bearing cone-beam CT of the knee. To achieve image quality for clinical diagnosis, the motion needs to be compensated. We propose to use inertial me... 详细信息
来源: 评论
Geometric enclosing networks  27
Geometric enclosing networks
收藏 引用
27th International Joint Conference on Artificial Intelligence, IJCAI 2018
作者: Le, Trung Vu, Hung Nguyen, Tu Dinh Phung, Dinh Faculty of Information Technology Monash University Australia Center for Pattern Recognition and Data Analytics Deakin University Australia
Training model to generate data has increasingly attracted research attention and become important in modern world applications. We propose in this paper a new geometry-based optimization approach to address this prob... 详细信息
来源: 评论
Batch Normalized Deep Boltzmann Machines  10
Batch Normalized Deep Boltzmann Machines
收藏 引用
10th Asian Conference on Machine Learning, ACML 2018
作者: Vu, Hung Nguyen, Tu Dinh Le, Trung Luo, Wei Phung, Dinh Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia Monash University ClaytonVIC3800 Australia
Training Deep Boltzmann Machines (DBMs) is a challenging task in deep generative model studies. The careless training usually leads to a divergence or a useless model. We discover that this phenomenon is due to the ch... 详细信息
来源: 评论