咨询与建议

限定检索结果

文献类型

  • 291 篇 会议
  • 111 篇 期刊文献

馆藏范围

  • 402 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 276 篇 工学
    • 204 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 72 篇 信息与通信工程
    • 23 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 174 篇 理学
    • 118 篇 物理学
    • 72 篇 数学
    • 42 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 39 篇 管理学
    • 28 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 70 篇 speech recogniti...
  • 42 篇 hidden markov mo...
  • 41 篇 training
  • 29 篇 neural machine t...
  • 25 篇 machine translat...
  • 21 篇 decoding
  • 20 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 17 篇 recurrent neural...
  • 16 篇 feature extracti...
  • 15 篇 vocabulary
  • 15 篇 transducers
  • 13 篇 databases
  • 13 篇 error analysis
  • 11 篇 speech
  • 11 篇 pattern recognit...
  • 11 篇 humans
  • 9 篇 training data
  • 9 篇 modelling langua...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...

作者

  • 212 篇 ney hermann
  • 81 篇 hermann ney
  • 61 篇 schlüter ralf
  • 23 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 casacuberta fran...
  • 20 篇 wuebker joern
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 399 篇 英文
  • 1 篇 西班牙文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language"
402 条 记 录,以下是41-50 订阅
排序:
Combining Translation and language Model Scoring for Domain-Specific Data Filtering  8
Combining Translation and Language Model Scoring for Domain-...
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Mansour, Saab Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
The increasing popularity of statistical machine translation (SMT) systems is introducing new domains of translation that need to be tackled. As many resources are already available, domain adaptation methods can be a... 详细信息
来源: 评论
Beam search for solving substitution ciphers
Beam search for solving substitution ciphers
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Nuhn, Malte Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper we address the problem of solving substitution ciphers using a beam search approach. We present a conceptually consistent and easy to implement method that improves the current state of the art for decip... 详细信息
来源: 评论
Transformer-based direct hidden Markov model for machine translation  59
Transformer-based direct hidden Markov model for machine tra...
收藏 引用
2021 Student Research Workshop, SRW 2021 at the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural language Processing, ACL-IJCNLP 2021
作者: Wang, Weiyue Yang, Zijian Gao, Yingbo Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Germany
The neural hidden Markov model has been proposed as an alternative to attention mechanism in machine translation with recurrent neural networks. However, since the introduction of the transformer models, its performan... 详细信息
来源: 评论
Improved decipherment of homophonic ciphers
Improved decipherment of homophonic ciphers
收藏 引用
2014 Conference on Empirical Methods in Natural language Processing, EMNLP 2014
作者: Nuhn, Malte Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we present two improvements to the beam search approach for solving homophonic substitution ciphers presented in Nuhn et al. (2013): An improved rest cost estimation together with an optimized strategy ... 详细信息
来源: 评论
The RWTH Aachen Machine Translation system for IWSLT 2010  7
The RWTH Aachen Machine Translation system for IWSLT 2010
收藏 引用
7th International Workshop on Spoken language Translation, IWSLT 2010
作者: Mansour, Saab Peitz, Stephan Vilar, David Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper we describe the statistical machine translation system of the RWTH Aachen University developed for the translation task of the IWSLT 2010. This year, we participated in the BTEC translation task for the ... 详细信息
来源: 评论
Decipherment complexity in 1:1 substitution ciphers
Decipherment complexity in 1:1 substitution ciphers
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Nuhn, Malte Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper we show that even for the case of 1:1 substitution ciphers-which encipher plaintext symbols by exchanging them with a unique substitute-finding the optimal decipherment with respect to a bigram language ... 详细信息
来源: 评论
Patch-based object recognition using discriminatively trained Gaussian mixtures
Patch-based object recognition using discriminatively traine...
收藏 引用
2006 17th British Machine Vision Conference, BMVC 2006
作者: Hegerath, Andre Deselaers, Thomas Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University D-52056 Aachen Germany
We present an approach using Gaussian mixture models for part-based object recognition where spatial relationships of the parts are explicitly modeled and parameters of the generative model are tuned discriminatively.... 详细信息
来源: 评论
Advancements in reordering models for statistical machine translation
Advancements in reordering models for statistical machine tr...
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Feng, Minwei Peter, Jan-Thorsten Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we propose a novel reordering model based on sequence labeling techniques. Our model converts the reordering problem into a sequence labeling problem, i.e. a tagging task. Results on five Chinese-Englis... 详细信息
来源: 评论
Spoken language Translation Using Automatically Transcribed Text in Training  9
Spoken Language Translation Using Automatically Transcribed ...
收藏 引用
9th International Workshop on Spoken language Translation, IWSLT 2012
作者: Peitz, Stephan Wiesler, Simon Nußbaum-Thom, Markus Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In spoken language translation a machine translation system takes speech as input and translates it into another language. A standard machine translation system is trained on written language data and expects written ... 详细信息
来源: 评论
Unsupervised adaptation for statistical machine translation  9
Unsupervised adaptation for statistical machine translation
收藏 引用
9th Workshop on Statistical Machine Translation, WMT 2014 at the 52nd Conference of the Associationfor Computational Linguistics, ACL 2014
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this work, we tackle the problem of language and translation models domainadaptation without explicit bilingual indomain training data. In such a scenario, the only information about the domain can be induced from ... 详细信息
来源: 评论