咨询与建议

限定检索结果

文献类型

  • 291 篇 会议
  • 111 篇 期刊文献

馆藏范围

  • 402 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 276 篇 工学
    • 204 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 72 篇 信息与通信工程
    • 23 篇 生物工程
    • 20 篇 机械工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 174 篇 理学
    • 118 篇 物理学
    • 72 篇 数学
    • 42 篇 统计学(可授理学、...
    • 27 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 39 篇 管理学
    • 28 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 70 篇 speech recogniti...
  • 42 篇 hidden markov mo...
  • 41 篇 training
  • 29 篇 neural machine t...
  • 25 篇 machine translat...
  • 21 篇 decoding
  • 20 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 17 篇 recurrent neural...
  • 16 篇 feature extracti...
  • 15 篇 vocabulary
  • 15 篇 transducers
  • 13 篇 databases
  • 13 篇 error analysis
  • 11 篇 speech
  • 11 篇 pattern recognit...
  • 11 篇 humans
  • 9 篇 training data
  • 9 篇 modelling langua...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...

作者

  • 212 篇 ney hermann
  • 81 篇 hermann ney
  • 61 篇 schlüter ralf
  • 23 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 casacuberta fran...
  • 20 篇 wuebker joern
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 399 篇 英文
  • 1 篇 西班牙文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language"
402 条 记 录,以下是61-70 订阅
排序:
Returnn: The RWTH extensible training framework for universal recurrent neural networks
Returnn: The RWTH extensible training framework for universa...
收藏 引用
2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
作者: Doetsch, Patrick Zeyer, Albert Voigtlaender, Paul Kulikov, Ilia Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany
In this work we release our extensible and easily configurable neural network training software. It provides a rich set of functional layers with a particular focus on efficient training of recurrent neural network to... 详细信息
来源: 评论
CharacTER: Translation Edit Rate on Character Level  1
CharacTER: Translation Edit Rate on Character Level
收藏 引用
1st Conference on Machine Translation, WMT 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Wang, Weiyue Peter, Jan-Thorsten Rosendahl, Hendrik Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
Recently, the capability of character-level evaluation measures for machine translation output has been confirmed by several metrics. This work proposes translation edit rate on character level (CharacTER), which calc... 详细信息
来源: 评论
Morpheme based Factored language Models for German LVCSR
Morpheme based Factored Language Models for German LVCSR
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: El-Desoky Mousa, Amr Ali Basha Shaik, M. Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflectional language, where a large number of words can be generated from the same root. It makes a liberal use of compounding leading to high Out-of-vocabulary (OOV) rates, and poor language Model... 详细信息
来源: 评论
Acoustic feature combination for robust speech recognition
Acoustic feature combination for robust speech recognition
收藏 引用
2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '05
作者: Zolnay, András Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University 52056 Aachen Germany
In this paper, we consider the use of multiple acoustic features of the speech signal for robust speech recognition. We investigate the combination of various auditory based (Mel Frequency Cepstrum Coefficients, Perce... 详细信息
来源: 评论
Confidence-based discriminative training for model adaptation in offline Arabic handwriting recognition
Confidence-based discriminative training for model adaptatio...
收藏 引用
ICDAR2009 - 10th International Conference on Document Analysis and recognition
作者: Dreuw, Philippe Heigold, Georg Ney, Hermann RWTH Aachen University Human Language Technology and Pattern Recognition Ahornstr 55 D-52056 Aachen Germany
We present a novel confidence-based discriminative training for model adaptation approach for an HMM based Arabic handwriting recognition system to handle different handwriting styles and their variations. Most curren... 详细信息
来源: 评论
The RWTH Aachen Speech recognition and Machine Translation System for IWSLT 2012  9
The RWTH Aachen Speech Recognition and Machine Translation S...
收藏 引用
9th International Workshop on Spoken language Translation, IWSLT 2012
作者: Peitz, Stephan Mansour, Saab Freitag, Markus Feng, Minwei Huck, Matthias Wuebker, Joern Nuhn, Malte Nußbaum-Thom, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
In this paper, the automatic speech recognition (ASR) and statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken language ... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for IWSLT 2011  8
The RWTH Aachen Machine Translation System for IWSLT 2011
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Wuebker, Joern Huck, Matthias Mansour, Saab Freitag, Markus Feng, Minwei Peitz, Stephan Schmidt, Christoph Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
In this paper the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken language Translation (IWSLT) 2011 is presented. W... 详细信息
来源: 评论
Sequence Labeling-based Reordering Model for Phrase-based SMT  9
Sequence Labeling-based Reordering Model for Phrase-based SM...
收藏 引用
9th International Workshop on Spoken language Translation, IWSLT 2012
作者: Feng, Minwei Peter, Jan-Thorsten Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
For current statistical machine translation system, reordering is still a major problem for language pairs like Chinese-English, where the source and target language have significant word order differences. In this pa... 详细信息
来源: 评论
Non-Stationary Signal Processing and its Application in Speech recognition
Non-Stationary Signal Processing and its Application in Spee...
收藏 引用
2012 SAPA-SCALE Conference
作者: Tüske, Zoltán Drepper, Friedhelm R. Schlüter, Ralf Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
The most widely used acoustic feature extraction methods of current automatic speech recognition (ASR) systems are based on the assumption of stationarity. In this paper we extensively evaluate a recently introduced f... 详细信息
来源: 评论
TANDEM HMM WITH CONVOLUTIONAL NEURAL NETWORK FOR HANDWRITTEN WORD recognition
TANDEM HMM WITH CONVOLUTIONAL NEURAL NETWORK FOR HANDWRITTEN...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Bluche, Theodore Ney, Hermann Kermorvant, Christopher A2iA SA France LIMSI CNRS Spoken Language Processing Group France RWTH Aachen University Human Language Technology and Pattern Recognition Germany
In this paper, we investigate the combination of hidden Markov models and convolutional neural networks for handwritten word recognition. The convolutional neural networks have been successfully applied to various com... 详细信息
来源: 评论