咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 101 篇 期刊文献

馆藏范围

  • 382 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 259 篇 工学
    • 191 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 36 篇 管理学
    • 26 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 380 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language Technology"
382 条 记 录,以下是111-120 订阅
排序:
Improving unsupervised word-by-word translation with language model and denoising autoencoder
arXiv
收藏 引用
arXiv 2019年
作者: Kim, Yunsu Geng, Jiahui Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Unsupervised learning of cross-lingual word embedding offers elegant matching of words across languages, but has fundamental limitations in translating sentences. In this paper, we propose simple yet effective methods... 详细信息
来源: 评论
When and why is document-level context useful in neural machine translation?
arXiv
收藏 引用
arXiv 2019年
作者: Duc, Yunsu Kim Tran, Thanh Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Document-level context has received lots of attention for compensating neural machine translation (NMT) of isolated sentences. However, recent advances in document-level NMT focus on sophisticated integration of the c... 详细信息
来源: 评论
ELoPE: Fine-Grained Visual Classification with Efficient Localization, Pooling and Embedding
arXiv
收藏 引用
arXiv 2019年
作者: Hanselmann, Harald Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
The task of fine-grained visual classification (FGVC) deals with classification problems that display a small inter-class variance such as distinguishing between different bird species or car models. State-of-the-art ... 详细信息
来源: 评论
Effective cross-lingual transfer of neural machine translation models without shared vocabularies
arXiv
收藏 引用
arXiv 2019年
作者: Kim, Yunsu Gao, Yingbo Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Aachen Germany
Transfer learning or multilingual model is essential for low-resource neural machine translation (NMT), but the applicability is limited to cognate languages by sharing their vocabularies. This paper shows effective t... 详细信息
来源: 评论
A comparative study on vocabulary reduction for phrase table smoothing
arXiv
收藏 引用
arXiv 2019年
作者: Kim, Yunsu Guta, Andreas Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany Lilt Inc
This work systematically analyzes the smoothing effect of vocabulary reduction for phrase translation models. We extensively compare various word-level vocabularies to show that the performance of smoothing is not sig...
来源: 评论
Comparison of lattice-free and lattice-based sequence discriminative training criteria for LVCSR
arXiv
收藏 引用
arXiv 2019年
作者: Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
Sequence discriminative training criteria have long been a standard tool in automatic speech recognition for improving the performance of acoustic models over their maximum likelihood / cross entropy trained counterpa... 详细信息
来源: 评论
A Comparison of Transformer and LSTM Encoder Decoder Models for ASR
A Comparison of Transformer and LSTM Encoder Decoder Models ...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Albert Zeyer Parnia Bahar Kazuki Irie Ralf Schlüter Hermann Ney AppTek GmbH Aachen Germany Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
We present competitive results using a Transformer encoder-decoder-attention model for end-to-end speech recognition needing less training time compared to a similarly performing LSTM model. We observe that the Transf... 详细信息
来源: 评论
Training language Models for Long-Span Cross-Sentence Evaluation
Training Language Models for Long-Span Cross-Sentence Evalua...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Kazuki Irie Albert Zeyer Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
While recurrent neural networks can motivate cross-sentence language modeling and its application to automatic speech recognition (ASR), corresponding modifications of the training method for that end are rarely discu... 详细信息
来源: 评论
A Comparative Study on End-to-End Speech to Text Translation
A Comparative Study on End-to-End Speech to Text Translation
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Parnia Bahar Tobias Bieschke Hermann Ney AppTek GmbH Aachen Germany Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Recent advances in deep learning show that end-to-end speech to text translation model is a promising approach to direct the speech translation field. In this work, we provide an overview of different end-to-end archi... 详细信息
来源: 评论
A neural, interactive-predictive system for multimodal sequence to sequence tasks
arXiv
收藏 引用
arXiv 2019年
作者: Peris, Álvaro Casacuberta, Francisco Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València València Spain
We present a demonstration of a neural interactive-predictive system for tackling multimodal sequence to sequence tasks. The system generates text predictions to different sequence to sequence tasks: machine translati... 详细信息
来源: 评论