咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 102 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 260 篇 工学
    • 191 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 37 篇 管理学
    • 27 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 381 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language Technology"
383 条 记 录,以下是11-20 订阅
排序:
A source-side decoding sequence model for statistical machine translation
A source-side decoding sequence model for statistical machin...
收藏 引用
9th Biennial Conference of the Association for Machine Translation in the Americas, AMTA 2010
作者: Feng, Minwei Mauser, Arne Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
We propose a source-side decoding sequence language model for phrase-based statistical machine translation. This model is a reordering model in the sense that it helps the decoder find the correct decoding sequence. T... 详细信息
来源: 评论
Unsupervised training for large vocabulary translation using sparse lexicon andword classes  15
Unsupervised training for large vocabulary translation using...
收藏 引用
15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
作者: Kim, Yunsu Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
We address for the first time unsupervised training for a translation task with hundreds of thousands of vocabulary words. We scale up the expectation-maximization (EM) algorithm to learn a large translation table wit... 详细信息
来源: 评论
Deciphering foreign language by combining language models and context vectors
Deciphering foreign language by combining language models an...
收藏 引用
50th Annual Meeting of the Association for Computational Linguistics, ACL 2012
作者: Nuhn, Malte Mauser, Arne Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
In this paper we show how to train statistical machine translation systems on reallife tasks using only non-parallel monolingual data from two languages. We present a modification of the method shown in (Ravi and Knig... 详细信息
来源: 评论
A comparison of update strategies for large-scale maximum expected BLEU training
A comparison of update strategies for large-scale maximum ex...
收藏 引用
Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2015
作者: Wuebker, Joern Muehr, Sebastian Lehnen, Patrick Peitz, Stephan Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
This work presents a flexible and efficient discriminative training approach for statistical machine translation. We propose to use the RPROP algorithm for optimizing a maximum expected BLEU objective and experimental... 详细信息
来源: 评论
A Combination of Hierarchical Systems with Forced Alignments from Phrase-Based Systems  7
A Combination of Hierarchical Systems with Forced Alignments...
收藏 引用
7th International Workshop on Spoken language Translation, IWSLT 2010
作者: Heger, Carmen Wuebker, Joern Vilar, David Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Currently most state-of-the-art statistical machine translation systems present a mismatch between training and generation conditions. Word alignments are computed using the well known IBM models for single-word based... 详细信息
来源: 评论
Length-incremental Phrase Training for SMT  8
Length-incremental Phrase Training for SMT
收藏 引用
8th Workshop on Statistical Machine Translation, WMT 2013
作者: Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
We present an iterative technique to generate phrase tables for SMT, which is based on force-aligning the training data with a modified translation decoder. Different from previous work, we completely avoid the use of... 详细信息
来源: 评论
Phrase Model Training for Statistical Machine Translation with Word Lattices of Preprocessing Alternatives  7
Phrase Model Training for Statistical Machine Translation wi...
收藏 引用
7th Workshop on Statistical Machine Translation, WMT 2012, immediately following the Conference of the North-American Chapter of the Association for Computational Linguistics - human language Technologies, NAACL HLT 2012
作者: Wuebker, Joern Ney, Hermann Human Language Technology And Pattern Recognition Group Rwth Aachen University Aachen Germany
In statistical machine translation, word lattices are used to represent the ambiguities in the preprocessing of the source sentence, such as word segmentation for Chinese or morphological analysis for German. Several ... 详细信息
来源: 评论
Improving statistical machine translation with word class models
Improving statistical machine translation with word class mo...
收藏 引用
2013 Conference on Empirical Methods in Natural language Processing, EMNLP 2013
作者: Wuebker, Joern Peitz, Stephan Rietig, Felix Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Automatically clustering words from a monolingual or bilingual training corpus into classes is a widely used technique in statistical natural language processing. We present a very simple and easy to implement method ... 详细信息
来源: 评论
Deep fisher faces  28
Deep fisher faces
收藏 引用
28th British Machine Vision Conference, BMVC 2017
作者: Hanselmann, Harald Yan, Shen Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Most current state-of-the-art methods for unconstrained face recognition use deep convolutional neural networks. Recently, it has been proposed to augment the typically used softmax cross-entropy loss by adding a cent... 详细信息
来源: 评论
Extended translation models in phrase-based decoding  10
Extended translation models in phrase-based decoding
收藏 引用
10th Workshop on Statistical Machine Translation, WMT 2015 at the 2015 Conference on Empirical Methods in Natural language Processing, EMNLP 2015
作者: Guta, Andreas Wuebker, Joern Graça, Miguel Kim, Yunsu Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Aachen Germany
We propose a novel extended translation model (ETM) to counteract some problems in phrase-based translation: The lack of translation context when using singleword phrases and uncaptured dependencies beyond phrase boun... 详细信息
来源: 评论