咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 101 篇 期刊文献

馆藏范围

  • 382 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 259 篇 工学
    • 191 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 66 篇 信息与通信工程
    • 20 篇 机械工程
    • 19 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 10 篇 光学工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
  • 163 篇 理学
    • 109 篇 物理学
    • 66 篇 数学
    • 36 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 20 篇 系统科学
    • 10 篇 化学
    • 1 篇 地球物理学
  • 36 篇 管理学
    • 26 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
    • 1 篇 法学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 66 篇 speech recogniti...
  • 40 篇 training
  • 38 篇 hidden markov mo...
  • 29 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 16 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 212 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 20 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 18 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried

语言

  • 380 篇 英文
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language Technology"
382 条 记 录,以下是301-310 订阅
排序:
Using morpheme and syllable based sub-words for polish LVCSR
Using morpheme and syllable based sub-words for polish LVCSR
收藏 引用
36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition - Computer Science Department RWTH Aachen University 52056 Aachen Germany
Polish is a synthetic language with a high morpheme-per-word ratio. It makes use of a high degree of inflection leading to high out-of-vocabulary (OOV) rates, and high language Model (LM) perplexities. This poses a ch... 详细信息
来源: 评论
Hybrid language models using mixed types of sub-lexical units for open vocabulary German LVCSR
Hybrid language models using mixed types of sub-lexical unit...
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: Ali Basha Shaik, M. El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflected language with a large number of words derived from the same root. It makes use of a high degree of word compounding leading to high Out-of-vocabulary (OOV) rates, and language Model (LM) p... 详细信息
来源: 评论
Morpheme based Factored language Models for German LVCSR
Morpheme based Factored Language Models for German LVCSR
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: El-Desoky Mousa, Amr Ali Basha Shaik, M. Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflectional language, where a large number of words can be generated from the same root. It makes a liberal use of compounding leading to high Out-of-vocabulary (OOV) rates, and poor language Model... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for IWSLT 2011  8
The RWTH Aachen Machine Translation System for IWSLT 2011
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Wuebker, Joern Huck, Matthias Mansour, Saab Freitag, Markus Feng, Minwei Peitz, Stephan Schmidt, Christoph Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
In this paper the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken language Translation (IWSLT) 2011 is presented. W... 详细信息
来源: 评论
Lightly-Supervised Training for Hierarchical Phrase-Based Machine Translation  1
Lightly-Supervised Training for Hierarchical Phrase-Based Ma...
收藏 引用
1st Workshop on Unsupervised Learning in NLP at the 2011 Conference on Empirical Methods in Natural language Processing, EMNLP 2011
作者: Huck, Matthias Vilar, David Stein, Daniel Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany DFKI GmbH Berlin Germany
In this paper we apply lightly-supervised training to a hierarchical phrase-based statistical machine translation system. We employ bitexts that have been built by automatically translating large amounts of monolingua... 详细信息
来源: 评论
Advancements in Arabic-to-English hierarchical machine translation
Advancements in Arabic-to-English hierarchical machine trans...
收藏 引用
15th International Conference of the European Association for Machine Translation, EAMT 2011
作者: Huck, Matthias Vilar, David Stein, Daniel Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany DFKI GmbH Berlin Germany
In this paper we study several advanced techniques and models for Arabic-to-English statistical machine translation. We examine how the challenges imposed by this particular language pair and translation direction can... 详细信息
来源: 评论
Soft String-to-Dependency Hierarchical Machine Translation  8
Soft String-to-Dependency Hierarchical Machine Translation
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Peter, Jan-Thorsten Huck, Matthias Ney, Hermann Stein, Daniel Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany Fraunhofer IAIS St. Augustin Germany
In this paper, we dissect the influence of several target-side dependency-based extensions to hierarchical machine translation, including a dependency language model (LM). We pursue a non-restrictive approach that doe... 详细信息
来源: 评论
Warp that smile on your face: Optimal and smooth deformations for face recognition
Warp that smile on your face: Optimal and smooth deformation...
收藏 引用
作者: Gass, Tobias Pishchulin, Leonid Dreuw, Philippe Ney, Hermann Computer Vision Laboratory ETH Zurich Switzerland Computer Vision and Multimodal Computing MPI Informatics Saarbruecken Germany Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
In this work, we present novel warping algorithms for full 2D pixel-grid deformations for face recognition. Due to high variation in face appearance, face recognition is considered a very difficult task, especially if... 详细信息
来源: 评论
Using morpheme and syllable based sub-words for polish LVCSR
Using morpheme and syllable based sub-words for polish LVCSR
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: M. Ali Basha Shaik Amr El-Desoky Mousa Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany
Polish is a synthetic language with a high morpheme-per-word ratio. It makes use of a high degree of inflection leading to high out-of-vocabulary (OOV) rates, and high language Model (LM) perplexities. This poses a ch... 详细信息
来源: 评论
A convergence analysis of log-linear training and its application to speech recognition
A convergence analysis of log-linear training and its applic...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: S. Wiesler R. Schlüter H. Ney Human Language Technology and Pattern Recognition RWTH Aachen University of Technology Aachen Germany
Log-linear models are a promising approach for speech recognition. Typically, log-linear models are trained according to a strictly convex criterion. Optimization algorithms are guaranteed to converge to the unique gl... 详细信息
来源: 评论