咨询与建议

限定检索结果

文献类型

  • 286 篇 会议
  • 134 篇 期刊文献

馆藏范围

  • 420 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 288 篇 工学
    • 211 篇 计算机科学与技术...
    • 191 篇 软件工程
    • 74 篇 信息与通信工程
    • 25 篇 机械工程
    • 24 篇 生物工程
    • 20 篇 电气工程
    • 19 篇 电子科学与技术(可...
    • 18 篇 控制科学与工程
    • 13 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 交通运输工程
    • 2 篇 材料科学与工程(可...
  • 178 篇 理学
    • 119 篇 物理学
    • 71 篇 数学
    • 40 篇 统计学(可授理学、...
    • 29 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 40 篇 管理学
    • 27 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 8 篇 法学
    • 7 篇 社会学
  • 5 篇 文学
    • 3 篇 外国语言文学
    • 2 篇 中国语言文学
    • 2 篇 新闻传播学
  • 4 篇 医学
    • 4 篇 临床医学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 农学
  • 1 篇 艺术学

主题

  • 70 篇 speech recogniti...
  • 41 篇 hidden markov mo...
  • 40 篇 training
  • 30 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 17 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 19 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 417 篇 英文
  • 1 篇 西班牙文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language Technology Center"
420 条 记 录,以下是121-130 订阅
排序:
Robust Beam Search for Encoder-Decoder Attention Based Speech recognition without Length Bias
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As one popular modeling approach for end-to-end speech recognition, attention-based encoder-decoder models are known to suffer the length bias and corresponding beam problem. Different approaches have been applied in ... 详细信息
来源: 评论
A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models
arXiv
收藏 引用
arXiv 2020年
作者: Zeineldeen, Mohammad Zeyer, Albert Zhou, Wei Ng, Thomas Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52062 Aachen Germany AppTek GmbH Aachen52062 Germany
Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE... 详细信息
来源: 评论
Investigation of large-margin softmax in neural language modeling
arXiv
收藏 引用
arXiv 2020年
作者: Huo, Jingjing Gao, Yingbo Wang, Weiyue Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
To encourage intra-class compactness and inter-class separability among trainable feature vectors, large-margin softmax methods are developed and widely applied in the face recognition community. The introduction of t... 详细信息
来源: 评论
Two-way neural machine translation: A proof of concept for bidirectional translation modeling using a two-dimensional grid
arXiv
收藏 引用
arXiv 2020年
作者: Bahar, Parnia Brix, Christopher Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Neural translation models have proven to be effective in capturing sufficient information from a source sentence and generating a high-quality target sentence. However, it is not easy to get the best effect for bidire... 详细信息
来源: 评论
Tight integrated end-to-end training for cascaded speech translation
arXiv
收藏 引用
arXiv 2020年
作者: Bahar, Parnia Bieschke, Tobias Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
A cascaded speech translation model relies on discrete and non-differentiable transcription, which provides a supervision signal from the source side and helps the transformation between source speech and target text.... 详细信息
来源: 评论
Neural data-To-Text generation via jointly learning the segmentation and correspondence
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Xiaoyu Chang, Ernie Su, Hui Zhou, Jie Klakow, Dietrich Max Planck Institute for Informatics Department of Language Science and Technology Saarland Informatics Campus Pattern Recognition Center Wechat Ai Tencent Inc China
The neural attention model has achieved great success in data-To-Text generation tasks. Though usually excelling at producing fluent text, it suffers from the problem of information missing, repetition and "hallu...
来源: 评论
When accurate prediction models yield harmful self-fulfilling prophecies
arXiv
收藏 引用
arXiv 2023年
作者: van Amsterdam, Wouter A.C. van Geloven, Nan Krijthe, Jesse H. Ranganath, Rajesh Cinà, Giovanni Department of Data Science and Biostatistics Julius Center of Health Sciences Primary Care University Medical Center Utrecht Heidelberglaan 100 Utrecht3584 CX Netherlands University of Utrecht Heidelberglaan 100 Utrecht3584 CX Netherlands Department of Biomedical Data Sciences Leiden University Medical Center Leiden Netherlands Pattern Recognition & Bioinformatics Delft University of Technology Delft Netherlands Courant Institute of Mathematical Science Department of Computer Science Center for Data Science New York University New York City United States Department of Medical Informatics Amsterdam University Medical Center Amsterdam Netherlands Institute for Logic Language and Computation University of Amsterdam Amsterdam Netherlands Pacmed Amsterdam Netherlands
Prediction models are popular in medical research and practice. By predicting an outcome of interest for specific patients, these models may help inform difficult treatment decisions, and are often hailed as the poste... 详细信息
来源: 评论
Improved robustness to disfluencies in RNN-transducer based speech recognition
arXiv
收藏 引用
arXiv 2020年
作者: Mendelev, Valentin Raissi, Tina Camporese, Guglielmo Giollo, Manuel Amazon Alexa United States Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany Department of Mathematics "Tullio Levi-Civita" University of Padova Italy
Automatic Speech recognition (ASR) based on Recurrent Neural Network Transducers (RNN-T) is gaining interest in the speech community. We investigate data selection and preparation choices aiming for improved robustnes... 详细信息
来源: 评论
Unsupervised training for large vocabulary translation using sparse lexicon and word classes
arXiv
收藏 引用
arXiv 2019年
作者: Kim, Yunsu Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University
We address for the first time unsupervised training for a translation task with hundreds of thousands of vocabulary words. We scale up the expectation-maximization (EM) algorithm to learn a large translation table wit... 详细信息
来源: 评论
HTR-Flor: A Deep Learning System for Offline Handwritten Text recognition
HTR-Flor: A Deep Learning System for Offline Handwritten Tex...
收藏 引用
Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI)
作者: Arthur Flor de Sousa Neto Byron Leite Dantas Bezerra Alejandro Héctor Toselli Estanislau Baptista Lima Escola Politécnica de Pernambuco Universidade de Pernambuco Recife Brazil Pattern Recognition and Human Language Technology Universitat Politècnica de València València Spain
In recent years, Handwritten Text recognition (HTR) has captured a lot of attention among the researchers of the computer vision community. Current state-of-the-art approaches for offline HTR are based on Convolutiona... 详细信息
来源: 评论