咨询与建议

限定检索结果

文献类型

  • 286 篇 会议
  • 134 篇 期刊文献

馆藏范围

  • 420 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 288 篇 工学
    • 211 篇 计算机科学与技术...
    • 191 篇 软件工程
    • 74 篇 信息与通信工程
    • 25 篇 机械工程
    • 24 篇 生物工程
    • 20 篇 电气工程
    • 19 篇 电子科学与技术(可...
    • 18 篇 控制科学与工程
    • 13 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 交通运输工程
    • 2 篇 材料科学与工程(可...
  • 178 篇 理学
    • 119 篇 物理学
    • 71 篇 数学
    • 40 篇 统计学(可授理学、...
    • 29 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 40 篇 管理学
    • 27 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 8 篇 法学
    • 7 篇 社会学
  • 5 篇 文学
    • 3 篇 外国语言文学
    • 2 篇 中国语言文学
    • 2 篇 新闻传播学
  • 4 篇 医学
    • 4 篇 临床医学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 农学
  • 1 篇 艺术学

主题

  • 70 篇 speech recogniti...
  • 41 篇 hidden markov mo...
  • 40 篇 training
  • 30 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 17 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 19 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 417 篇 英文
  • 1 篇 西班牙文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language Technology Center"
420 条 记 录,以下是171-180 订阅
排序:
On using specaugment for end-to-end speech translation
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52062 Germany AppTek Aachen52062 Germany
This work investigates a simple data augmentation technique, SpecAugment, for end-to-end speech translation. SpecAugment is a low-cost implementation method applied directly to the audio input features and it consists...
来源: 评论
Cumulative adaptation for BLSTM acoustic models
arXiv
收藏 引用
arXiv 2019年
作者: Kitza, Markus Golik, Pavel Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
This paper addresses the robust speech recognition problem as an adaptation task. Specifically, we investigate the cumulative application of adaptation methods. A bidirectional Long Short-Term Memory (BLSTM) based neu... 详细信息
来源: 评论
On using 2D sequence-to-sequence models for speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany AppTek McLean United States
Attention-based sequence-to-sequence models have shown promising results in automatic speech recognition. Using these architectures, one-dimensional input and output sequences are related by an attention approach, the... 详细信息
来源: 评论
Sample drop detection for distant-speech recognition with asynchronous devices distributed in space
arXiv
收藏 引用
arXiv 2019年
作者: Raissi, Tina Pascual, Santiago Omologo, Maurizio Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Universitat Politècnica de Catalunya Barcelona Spain Center for Information and Communication Technology Fondazione Bruno Kessler Trento Italy
In many applications of multi-microphone multi-device processing, the synchronization among different input channels can be affected by the lack of a common clock and isolated drops of samples. In this work, we addres... 详细信息
来源: 评论
language modeling with deep transformers
arXiv
收藏 引用
arXiv 2019年
作者: Irie, Kazuki Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
We explore deep autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show th... 详细信息
来源: 评论
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural Networks
arXiv
收藏 引用
arXiv 2019年
作者: Maroñas, Juan Paredes, Roberto Ramos, Daniel PRHLT - Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de Valencia Spain AUDIAS - Audio Data Intelligence and Speech Universidad Autónoma de Madrid Spain
Deep Neural Networks (DNNs) have achieved state-of-the-art accuracy performance in many tasks. However, recent works have pointed out that the outputs provided by these models are not well-calibrated, seriously limiti... 详细信息
来源: 评论
Advances on the Transcription of Historical Manuscripts based on Multimodality, Interactivity and Crowdsourcing  4
Advances on the Transcription of Historical Manuscripts base...
收藏 引用
4th International Conference on Advances in Speech and language Technologies for Iberian languages, IberSPEECH 2018
作者: Granell, Emilio Martínez-Hinarejos, Carlos-D. Romero, Verónica Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camí de Vera s/n València46022 Spain
The transcription of digitalised documents is useful to ease the digital access to their contents. Natural language technologies, such as Automatic Speech recognition (ASR) for speech audio signals and Handwritten Tex... 详细信息
来源: 评论
Improving Transcription of Manuscripts with Multimodality and Interaction  4
Improving Transcription of Manuscripts with Multimodality an...
收藏 引用
4th International Conference on Advances in Speech and language Technologies for Iberian languages, IberSPEECH 2018
作者: Granell, Emilio Martínez-Hinarejos, Carlos-D. Romero, Verónica Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València Camí de Vera s/n València46022 Spain
State-of-the-art Natural language recognition systems allow transcribers to speed-up the transcription of audio, video or image documents. These systems provide transcribers an initial draft transcription that can be ... 详细信息
来源: 评论
Improved training of end-to-end attention models for speech recognition  19
Improved training of end-to-end attention models for speech ...
收藏 引用
19th Annual Conference of the International Speech Communication, INTERSPEECH 2018
作者: Zeyer, Albert Irie, Kazuki Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany AppTek United States NNAISENSE Switzerland
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h a... 详细信息
来源: 评论
On the choice of modeling unit for sequence-to-sequence speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Irie, Kazuki Prabhavalkar, Rohit Kannan, Anjuli Bruguier, Antoine Rybach, David Nguyen, Patrick Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany Google Mountain ViewCA94043 United States
来源: 评论