This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the German!English translation task of the ACL 2014 Eighth Workshop on Statistical Machine Translation (WM...
详细信息
We present a novel toolkit that implements the long short-term memory (LSTM) neural network concept for language modeling. The main goal is to provide a software which is easy to use, and which allows fast training of...
详细信息
This paper investigates the application of vector space models (VSMs) to the standard phrase-based machine translation pipeline. VSMs are models based on continuous word representations embedded in a vector space. We ...
详细信息
This work presents two different translation models using recurrent neural networks. The first one is a word-based approach using word alignments. Second, we present phrase-based translation models that are more consi...
详细信息
Manual analysis and decryption of enciphered documents is a tedious and error prone work. Often-even after spending large amounts of time on a particular cipher-no decipherment can be found. Automating the decryption ...
详细信息
This paper describes the RWTH system for large vocabulary Arabic handwriting recognition. The recognizer is based on Hidden Markov Models (HMMs) with state of the art methods for visual/language modeling and decoding....
详细信息
This paper describes the RWTH system for large vocabulary Arabic handwriting recognition. The recognizer is based on Hidden Markov Models (HMMs) with state of the art methods for visual/language modeling and decoding. The feature extraction is based on Recurrent Neural Networks (RNNs) which estimate the posterior distribution over the character labels for each observation. Discriminative training using the Minimum Phone Error (MPE) criterion is used to train the HMMs. The recognition is done with the help of n-gram language Models (LMs) trained using in-domain text data. Unsupervised writer adaptation is also performed using the Constrained Maximum Likelihood Linear Regression (CMLLR) feature adaptation. The RWTH Arabic handwriting recognition system gave competitive results in previous handwriting recognition competitions. The used techniques allows to improve the performance of the system participating in the OpenHaRT 2013 evaluation.
We present a method for training an off-line handwriting recognition system in an unsupervised manner. For an isolated word recognition task, we are able to bootstrap the system without any annotated data. We then ret...
详细信息
We present a method for training an off-line handwriting recognition system in an unsupervised manner. For an isolated word recognition task, we are able to bootstrap the system without any annotated data. We then retrain the system using the best hypothesis from a previous recognition pass in an iterative fashion. Our approach relies only on a prior language model and does not depend on an explicit segmentation of words into characters. The resulting system shows a promising performance on a standard dataset in comparison to a system trained in a supervised fashion for the same amount of training data.
The task of fine-grained visual categorization is related to both general object recognition and specialized tasks such as face recognition. Hence, we propose to combine two methods popular for general object recognit...
详细信息
The task of fine-grained visual categorization is related to both general object recognition and specialized tasks such as face recognition. Hence, we propose to combine two methods popular for general object recognition and face recognition to build a new model-free system for fine-grained visual categorization. Specifically, we use Local Naive-Bayes Nearest Neighbor as a pre-selection method and 2D-Warping as a refinement step. For the latter, we explore different ways to use the alignments computed by a 2D-Warping algorithm for classification. We demonstrate the performance of our approach on the CUB200-2011 database and show that our approach outperforms the recognition accuracy of current state-of-the-art methods.
We propose a state-of-the-art system for recognizing real-world handwritten images exposing a huge degree of noise and a high out-of-vocabulary rate. We describe methods for successful image demising, line removal, de...
详细信息
We propose a state-of-the-art system for recognizing real-world handwritten images exposing a huge degree of noise and a high out-of-vocabulary rate. We describe methods for successful image demising, line removal, deskewing, deslanting, and text line segmentation. We demonstrate how to use a HMM-based recognition system to obtain competitive results, and how to further improve it using LSTM neural networks in the tandem approach. The final system outperforms other approaches on a new dataset for English and French handwriting. The presented framework scales well across other standard datasets.
A contest on Handwritten Text recognition organised in the context of the ICFHR 2014 conference is described. Two tracks with increased freedom on the use of training data were proposed and three research groups parti...
详细信息
A contest on Handwritten Text recognition organised in the context of the ICFHR 2014 conference is described. Two tracks with increased freedom on the use of training data were proposed and three research groups participated in these two tracks. The handwritten images for this contest were drawn from an English data set which is currently being considered in the Tran scriptorium project. The goal of this project is to develop innovative, efficient and cost-effective solutions for the transcription of historical handwritten document images, focusing on four languages: English, Spanish, German and Dutch. For the English language, the so-called "Bentham collection" is being considered in Tran scriptorium. It encompasses a large set of manuscripts written by the renowned English philosopher and reformer Jeremy Bentham (1748-1832). A small subset of this collection has been chosen for the present HTR competition. The selected subset has been written by several hands (Bentham himself and his secretaries) and entails significant variabilities and difficulties regarding the quality of text images and writing styles. Training and test data were provided in the form of carefully segmented line images, along with the corresponding transcripts. The three participants achieved very good results, with transcription word error rates ranging from 15.0% down to 8.6%.
暂无评论