咨询与建议

限定检索结果

文献类型

  • 286 篇 会议
  • 134 篇 期刊文献

馆藏范围

  • 420 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 288 篇 工学
    • 211 篇 计算机科学与技术...
    • 191 篇 软件工程
    • 74 篇 信息与通信工程
    • 25 篇 机械工程
    • 24 篇 生物工程
    • 20 篇 电气工程
    • 19 篇 电子科学与技术(可...
    • 18 篇 控制科学与工程
    • 13 篇 光学工程
    • 10 篇 化学工程与技术
    • 9 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 交通运输工程
    • 2 篇 材料科学与工程(可...
  • 178 篇 理学
    • 119 篇 物理学
    • 71 篇 数学
    • 40 篇 统计学(可授理学、...
    • 29 篇 生物学
    • 20 篇 系统科学
    • 11 篇 化学
  • 40 篇 管理学
    • 27 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 8 篇 法学
    • 7 篇 社会学
  • 5 篇 文学
    • 3 篇 外国语言文学
    • 2 篇 中国语言文学
    • 2 篇 新闻传播学
  • 4 篇 医学
    • 4 篇 临床医学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 农学
  • 1 篇 艺术学

主题

  • 70 篇 speech recogniti...
  • 41 篇 hidden markov mo...
  • 40 篇 training
  • 30 篇 neural machine t...
  • 23 篇 machine translat...
  • 20 篇 decoding
  • 19 篇 handwriting reco...
  • 18 篇 computer aided l...
  • 17 篇 recurrent neural...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 14 篇 vocabulary
  • 12 篇 databases
  • 12 篇 error analysis
  • 11 篇 speech
  • 10 篇 pattern recognit...
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 optimization
  • 9 篇 context

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 23 篇 apptek gmbh aach...
  • 20 篇 human language t...
  • 16 篇 human language t...
  • 13 篇 human language t...
  • 12 篇 pattern recognit...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...

作者

  • 210 篇 ney hermann
  • 80 篇 hermann ney
  • 61 篇 schlüter ralf
  • 22 篇 ralf schluter
  • 21 篇 ralf schlüter
  • 19 篇 wuebker joern
  • 18 篇 casacuberta fran...
  • 18 篇 zeyer albert
  • 17 篇 zhou wei
  • 16 篇 gao yingbo
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 12 篇 peris álvaro
  • 12 篇 peter jan-thorst...
  • 12 篇 michel wilfried
  • 12 篇 peitz stephan
  • 12 篇 huck matthias

语言

  • 417 篇 英文
  • 1 篇 西班牙文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Human Language Technology Center"
420 条 记 录,以下是281-290 订阅
排序:
Advancements in reordering models for statistical machine translation
Advancements in reordering models for statistical machine tr...
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Feng, Minwei Peter, Jan-Thorsten Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we propose a novel reordering model based on sequence labeling techniques. Our model converts the reordering problem into a sequence labeling problem, i.e. a tagging task. Results on five Chinese-Englis... 详细信息
来源: 评论
Phrase training based adaptation for statistical machine translation
Phrase training based adaptation for statistical machine tra...
收藏 引用
2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2013
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We present a novel approach for translation model (TM) adaptation using phrase training. The proposed adaptation procedure is initialized with a standard general-domain TM, which is then used to perform phrase trainin... 详细信息
来源: 评论
Phrase Training Based Adaptation for Statistical Machine Translation  2
Phrase Training Based Adaptation for Statistical Machine Tra...
收藏 引用
2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2013
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We present a novel approach for translation model (TM) adaptation using phrase training. The proposed adaptation procedure is initialized with a standard general-domain TM, which is then used to perform phrase trainin... 详细信息
来源: 评论
Improving Continuous Sign language recognition: Speech recognition Techniques and System Design  4
Improving Continuous Sign Language Recognition: Speech Recog...
收藏 引用
4th Workshop on Speech and language Processing for Assistive Technologies, SLPAT 2013
作者: Forster, Jens Koller, Oscar Oberdorfer, Christian Gweth, Yannick Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
Automatic sign language recognition (ASLR) is a special case of automatic speech recognition (ASR) and computer vision (CV) and is currently evolving from using artificial labgenerated data to using 'real-life'... 详细信息
来源: 评论
TANDEM HMM WITH CONVOLUTIONAL NEURAL NETWORK FOR HANDWRITTEN WORD recognition
TANDEM HMM WITH CONVOLUTIONAL NEURAL NETWORK FOR HANDWRITTEN...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Bluche, Theodore Ney, Hermann Kermorvant, Christopher A2iA SA France LIMSI CNRS Spoken Language Processing Group France RWTH Aachen University Human Language Technology and Pattern Recognition Germany
In this paper, we investigate the combination of hidden Markov models and convolutional neural networks for handwritten word recognition. The convolutional neural networks have been successfully applied to various com... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for WMT 2013  8
The RWTH Aachen Machine Translation System for WMT 2013
收藏 引用
8th Workshop on Statistical Machine Translation, WMT 2013
作者: Peitz, Stephan Mansour, Saab Peter, Jan-Thorsten Schmidt, Christoph Wuebker, Joern Huck, Matthias Freitag, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the translation task of the ACL 2013 Eighth Workshop on Statistical Machine Translation (WMT 2013). We par... 详细信息
来源: 评论
A Phrase Orientation Model for Hierarchical Machine Translation  8
A Phrase Orientation Model for Hierarchical Machine Translat...
收藏 引用
8th Workshop on Statistical Machine Translation, WMT 2013
作者: Huck, Matthias Wuebker, Joern Rietig, Felix Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
We introduce a lexicalized reordering model for hierarchical phrase-based machine translation. The model scores monotone, swap, and discontinuous phrase orientations in the manner of the one presented by Tillmann (200... 详细信息
来源: 评论
Feature-rich sub-lexical language models using a maximum entropy approach for German LVCSR
Feature-rich sub-lexical language models using a maximum ent...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
German is a morphologically rich language having a high degree of word inflections, derivations and compounding. This leads to high out-of-vocabulary (OOV) rates and poor language model (LM) probabilities in the large... 详细信息
来源: 评论
Morpheme level hierarchical pitman-Yor class-based language models for LVCSR of morphologically rich languages
Morpheme level hierarchical pitman-Yor class-based language ...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: El-Desoky Mousa, Amr Shaik, M. Ali Basha Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Performing large vocabulary continuous speech recognition (LVCSR) for morphologically rich languages is considered a challenging task. The morphological richness of such languages leads to high out-of-vocabulary (OOV)... 详细信息
来源: 评论
Investigations on hessian-free optimization for cross-entropy training of deep neural networks
Investigations on hessian-free optimization for cross-entrop...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Wiesler, Simon Li, Jinyu Xue, Jian Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University 52056 Aachen Germany Microsoft Corporation Redmond WA 98052 United States
Context-dependent deep neural network HMMs have been shown to achieve recognition accuracy superior to Gaussian mixture models in a number of recent works. Typically, neural networks are optimized with stochastic grad... 详细信息
来源: 评论